Exercices du CH12 : Interversion limite-intégrale

Exercices de la banque INP à étudier : ex 19 (utilisation du th. d'intégration terme à terme), 25, 26, 27 (utilisation du th. de convergence dominée), 29 (fonction Gamma), 30 (intégrale à paramètre et équa. diff.), 49 (utilisation du th. d'intégration terme à terme), 50 (continuité et équivalent d'une intégrale à paramètre).

I Suites d'intégrales

Exercice 1 (*)

Déterminer les limites pour $n \to +\infty$ des suites d'intégrales suivantes :

$$I_n = \int_0^{\pi} \sqrt{\pi - x} \sin^n(x) dx, \quad J_n = \int_0^{\sqrt[n]{n}} \sqrt{1 + x^n} dx.$$

On pourra découper judicieusement J_n ...

Corrigé de l'exercice 1

1. Pour tout $n \in \mathbb{N}$, la fonction $f_n : x \mapsto \sqrt{\pi - x} \sin^n(x)$ est continue par morceaux (car continue) sur $[0, \pi]$, la suite (f_n) converge simplement vers la fonction continue par morceaux

$$f: \left\{ \begin{array}{ccc} [0,\pi] & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \left\{ \begin{array}{ccc} 0 & \text{si } x \neq \frac{\pi}{2} \\ \sqrt{\frac{\pi}{2}} & \text{si } x = \frac{\pi}{2} \end{array} \right. \right.$$

et enfin, on a

$$\forall n \in \mathbb{N}, \ \forall x \in [0, \pi], \qquad |f_n(x)| \le \varphi(x) = \sqrt{\pi - x},$$

avec φ intégrable sur $[0,\pi]$ (car continue sur ce segment).

Donc d'après le théorème de convergence dominée, $I_n = \int_0^{\pi} f_n \underset{n \to +\infty}{\to} \int_0^{\pi} f = 0$.

2. Pour tout $n \in \mathbb{N}^*$, on pose $g_n : x \mapsto \sqrt{1+x^n}$. Chaque fonction g_n est continue sur \mathbb{R}^+ . On décompose $J_n = A_n + B_n$, avec

$$A_n = \int_0^1 g_n, \qquad B_n = \int_1^{\sqrt[n]{n}} g_n.$$

Le théorème de convergence domininée s'applique à la suite d'intégrales (A_n) , puisque (g_n) converge simplement vers la fonction constante égale à 1 sur l'intervalle [0,1[et on a $\forall n \in \mathbb{N}$, $\forall x \in [0,1], |g_n(x)| \leq \varphi(x)$, où $\varphi: x \mapsto \sqrt{2}$ est intégrable sur [0,1[. Donc $A_n \underset{n \to +\infty}{\to} \int_0^1 dx = 1$. Quant à B_n , il suffit de majorer :

$$|B_n| \le \left(\sqrt[n]{n} - 1\right) \|g_n\|_{\infty, [1, \sqrt[n]{n}]} = \left(e^{\ln(n)/n} - 1\right) \sqrt{1 + n} \underset{n \to +\infty}{\sim} \frac{\ln(n)}{\sqrt{n}} \underset{n \to +\infty}{\to} 0.$$

Donc par somme, $J_n \xrightarrow[n \to +\infty]{} 1$.

Exercice 2 (**De la forme $f(t^n)$)

- 1. Soit $f:[0,1]\to\mathbb{R}$ continue. Étudier la limite de $\int_0^1 f(t^n)dt$ pour $n\to+\infty$.
- 2. Chercher un équivalent pour $n \to +\infty$ de $\int_0^1 \frac{t^n}{1+t^n} dt$.

Corrigé de l'exercice 2

1. Pour tout $n \in \mathbb{N}$, posons $g_n : t \mapsto f(t^n)$. Par continuité de f, les g_n sont continues sur [0,1], la suite (g_n) converge simplement sur [0,1] vers la fonction continue par morceaux $g: t \mapsto \left\{ \begin{array}{l} f(0) & \text{si } 0 \leq t < 1 \\ f(1) & \text{si } t = 1 \end{array} \right.$, et pour tout $(n,t) \in \mathbb{N} \times [0,1], \, |g_n(t)| \leq \varphi(t),$ où φ est la fonction constante égale à $\|f\|_{\infty,[0,1]}$, donc φ est intégrable sur [0,1]. On obtient donc par le théorème de convergence dominée que

$$\int_{0}^{1} f(t^{n})dt = \int_{0}^{1} g_{n} \underset{n \to +\infty}{\to} \int_{0}^{1} g = f(0).$$

2. La première question appliquée à $f: t \mapsto \frac{t}{1+t}$ (qui est bien continue sur [0,1]) donne $\int_0^1 \frac{t^n}{1+t^n} dt \xrightarrow[n \to +\infty]{} f(0) = 0$, mais ne fournit pas d'équivalent. Avec le changement de variable $x = t^n$, on peut réécrire, pour tout $n \in \mathbb{N}^*$:

$$\int_0^1 \frac{t^n}{1+t^n} dt = \frac{1}{n} \int_0^1 \frac{x^{1/n}}{1+x} dx.$$

On peut alors appliquer le théorème de convergence dominée à la suite de fonctions $(h_n)_{n\geq 1}$ définie par $h_n: x\mapsto \frac{x^{1/n}}{1+x}$. Les h_n sont continues sur]0,1] (et prolongeables par continuité sur [0,1]), $(h_n)_{n\geq 1}$ converge simplement sur [0,1] vers la fonction continue $h: x\mapsto \frac{1}{1+x}$, et $\forall (n,x)\in \mathbb{N}^*\times [0,1], \ |h_n(x)|\leq \varphi(x)=\frac{1}{1+x}$, où la fonction $\varphi=h$ est intégrable sur [0,1] car continue sur ce segment. On en déduit que $\int_0^1 h_n \underset{n\to +\infty}{\to} \int_0^1 h = \ln(2)$, et donc

$$\int_0^1 \frac{t^n}{1+t^n} dt \underset{n \to +\infty}{\sim} \frac{\ln(2)}{n}.$$

Exercice 3 (***Lemme de Riemann-Lebesgue)

Montrer le lemme de Riemann-Lebesgue : pour $f \in \mathcal{C}^0_{pm}([a,b],\mathbb{K})$, on a $\lim_{n \to +\infty} \int_a^b f(t)e^{int}dt = 0$

Corrigé de l'exercice 3

On a déjà vu une preuve de ce résultat par IPP lorsque f est de classe C^1 , ce qui ne s'applique évidemment pas ici.

L'idée est de procéder par densité, en approchant uniformément $f \in \mathcal{C}^0_{pm}([a,b],\mathbb{K})$ par une fonction en escalier $e \in \mathcal{E}([a,b],\mathbb{K})$, qui est beaucoup plus simple à étudier.

• Le lemme de Riemann-Lebesgue est évident pour toute fonction constante c sur un intervalle borné quelconque $]\alpha,\beta[$, puisque

$$\left| \int_{\alpha}^{\beta} c e^{int} dt \right| = \left| \frac{c}{in} (e^{in\beta} - e^{in\alpha}) \right| \le \frac{c}{n} (|e^{in\beta}| + |e^{in\alpha}|) = \frac{2c}{n} \underset{n \to +\infty}{\to} 0.$$

• Puisqu'une fonction en escalier est constante par morceaux, on en déduit par linéarité de l'intégrale que le lemme de Riemann-Lebesgue reste vrai pour toute fonction $e \in \mathcal{E}([a,b],\mathbb{K})$: en notant $(\alpha_0,\cdots,\alpha_K)$ une subdivision de [a,b] adaptée à e et c_k la valeur de e sur l'intervalle $]\alpha_k,\alpha_{k+1}[$, on a

$$\int_{a}^{b} f(t)e^{int}dt = \sum_{k=0}^{K-1} \int_{\alpha_{k}}^{\alpha_{k+1}} c_{k}e^{int}dt \underset{n \to +\infty}{\to} 0$$

d'après le cas précédent (puisque le nombre de termes de la somme est indépendant de la variable n).

• Passons au cas général : fixons une fonction $f \in \mathcal{C}^0_{pm}([a,b],\mathbb{K})$ et un réel $\varepsilon > 0$. Par le théorème d'approximation uniforme, il existe une fonction $e \in \mathcal{E}([a,b],\mathbb{K})$ telle que $\|f-e\|_{\infty,[a,b]} \leq \varepsilon$. On en déduit que pour tout entier $n \in \mathbb{N}$:

$$\int_{a}^{b} f(t)e^{int}dt = A_n + B_n,$$

où $A_n=\int_a^b e(t)e^{int}dt$ tend vers 0 lorsque $n\to +\infty$ (d'après le cas précédent), et $B_n=\int_a^b (f(t)-e(t))e^{int}dt$ vérifie la majoration :

$$|B_n| \le \int_a^b |f(t) - e(t)| dt \le (b - a)\varepsilon.$$

Donc il existe un entier n_0 tel que

$$n \ge n_0 \implies |A_n| \le \varepsilon \implies \left| \int_a^b f(t)e^{int}dt \right| \le (1+b-a)\varepsilon.$$

Quitte à remplacer dès le début ε par $\frac{\varepsilon}{1+b-a}$, on obtient

$$\forall \varepsilon > 0, \ \exists n_0 \in \mathbb{N}, \ n \ge n_0 \implies \left| \int_a^b f(t) e^{int} dt \right| \le \varepsilon,$$

ce qui montre bien que $\int_a^b f(t)e^{int}dt \underset{n\to+\infty}{\longrightarrow} 0$. Le lemme de Riemann-Lebesgue est donc démontré.

Exercice 4 (***Expression intégrale de la constante d'Euler)

- 1. Démontrer que la fonction $f: x \mapsto \ln(x)e^{-x}$ est intégrable sur $]0; +\infty[$.
- 2. Grâce au théorème de convergence dominée, démontrer la relation :

$$\int_0^{+\infty} \ln(x)e^{-x}dx = \lim_{n \to +\infty} \int_0^n \left(1 - \frac{x}{n}\right)^n \ln(x)dx.$$

3. Conclure que $\int_0^{+\infty} \ln(x)e^{-x}dx = -\gamma$, où $\gamma = \lim_{n \to +\infty} \left(\sum_{k=1}^n \frac{1}{k} - \ln(n)\right)$ est la constante d'Euler.

Corrigé de l'exercice 4

- 1. Arguments principaux : $f(x) \underset{x \to 0}{\sim} \ln(x)$ et $|f(x)| \le xe^{-x}$ où $xe^{-x} = \underset{x \to +\infty}{o} \left(\frac{1}{x^2}\right)$.
- 2. On définit les fonctions $f_n: \left\{ \begin{array}{ccc}]0,+\infty[& \longrightarrow & \mathbb{R} \\ x & \longmapsto & \left\{ \begin{array}{ccc} \left(1-\frac{x}{n}\right)^n \ln(x) & \text{si } 0 < x \leq n \\ 0 & \text{si } x > n \end{array} \right. \right.$, qui sont continues.

On vérifie qu'on a $f_n \xrightarrow{s} f$ sur $]0, +\infty[$.

En utilisant que pour tout x > -1, $\ln(1+x) \le x$, on montre que les f_n sont toutes dominées par |f| sur $]0, +\infty[$. Comme f est bien continue et intégrable sur $]0, +\infty[$, on peut appliquer le théorème de convergence dominée. D'où :

$$\int_0^{+\infty} \ln(x)e^{-x}dx = \lim_{n \to +\infty} \int_0^n \left(1 - \frac{x}{n}\right)^n \ln(x)dx.$$

3. On note $I_n = \int_0^n \left(1 - \frac{x}{n}\right)^n \ln(x) dx$. En effectuant le changement de variable (à justifier) $u = \frac{x}{n}$, on obtient :

$$I_n = \int_0^1 (1 - u)^n \left(\ln(u) + \ln(n) \right) n du = n \int_0^1 (1 - u)^n \ln(u) du + n \ln(n) \int_0^1 (1 - u)^n du$$
$$= n \int_0^1 (1 - u)^n \ln(u) du + \frac{n \ln(n)}{n + 1}.$$

Ensuite, par IPP, en prenant $u \mapsto \frac{1-(1-u)^{n+1}}{n+1}$ comme primitive (s'annulant en 0) de $u \mapsto (1-u)^n$, on obtient :

$$\int_0^1 (1-u)^n \ln(u) du = \left[n \frac{1 - (1-u)^{n+1}}{n+1} \ln(u) \right]_0^1 - \frac{n}{n+1} \int_0^1 \frac{1 - (1-u)^{n+1}}{u} du$$

$$= -\frac{n}{n+1} \int_0^1 \sum_{p=0}^n (1-u)^p du = -\frac{n}{n+1} \sum_{p=0}^n \int_0^1 x^p dx = -\frac{n}{n+1} \sum_{p=0}^n \frac{1}{p+1}.$$
Donc
$$\int_0^{+\infty} \ln(x) e^{-x} dx = \lim_{n \to +\infty} \frac{n}{n+1} \left(\ln(n) - \sum_{p=1}^{n+1} \frac{1}{p} \right) = -\gamma.$$

II Permutations séries-intégrales

Exercice 5 (*)

Justifier l'existence de $I = \int_0^{+\infty} \frac{xe^{-ax}}{1 - e^{-bx}} dx$ pour $(a, b) \in (\mathbb{R}_+^*)^2$, puis, en appliquant judicieusement

le théorème d'intégration terme à terme, montrer qu'on a : $I = \sum_{n=0}^{+\infty} \frac{1}{(a+bn)^2}$.

Corrigé de l'exercice 5

• Existence de l'intégrale : la fonction $S: x \mapsto \frac{xe^{-ax}}{1-e^{-bx}}$ est continue sur $]0,+\infty[$ (puisque $\forall x>0,\ 0< e^{-bx}<1$, le dénominateur de S ne s'annule pas), et vérifie :

$$S(x) \underset{x \to 0^+}{\sim} \frac{x}{bx} = \frac{1}{b},$$

donc S se prolonge continûment en 0. De plus :

$$S(x) \underset{x \to +\infty}{\sim} xe^{-ax} = o(1/x^2),$$

donc S est intégrable sur $]0, +\infty[$, ce qui montre l'existence de $I = \int_0^{+\infty} S(x) dx$.

• Formule : Puisque $e^{-bx} \in]0,1[\subset]-1,1[$ pour tout x>0, on peut utiliser le développement en série géométrique :

$$\forall x > 0,$$
 $S(x) = xe^{-ax} \sum_{n=0}^{+\infty} (e^{-bx})^n = \sum_{n=0}^{+\infty} u_n(x),$

en posant $u_n: x \mapsto xe^{-(a+bn)x}$ pour tout $n \in \mathbb{N}$. Les u_n sont continues sur \mathbb{R} (donc sur $]0, +\infty[$), intégrables sur $]0, +\infty[$ (car continues sur \mathbb{R}^+ et négligeables devant $1/x^2$ en $+\infty$), la série $\sum u_n$ converge simplement vers la fonction continue (par morceaux) S, et les u_n sont positives, donc d'après le théorème d'intégration terme à terme "à la Fubini", on a la relation dans $\mathbb{R}^+ \cup \{+\infty\}$:

$$\int_0^{+\infty} S(x)dx = \int_0^{+\infty} \left(\sum_{n=0}^{+\infty} u_n(x)\right) dx = \sum_{n=0}^{+\infty} \left(\int_0^{+\infty} u_n(x)dx\right).$$

Par IPP, on obtient facilement que $\int_0^{+\infty} u_n(x) dx = \frac{1}{(a+nb)^2}$ pour tout $n \in \mathbb{N}$, ce qui montre la formule voulue dans $\mathbb{R}^+ \cup \{+\infty\}$, et en fait dans \mathbb{R}^+ puisque $\sum_{n=0}^{+\infty} \left(\int_0^{+\infty} u_n(x) dx \right) = \sum_{n=0}^{+\infty} \frac{1}{(a+nb)^2} < +\infty$ (par le critère des équivalents).

Exercice 6 (**Développement en série de ln(2))

- 1. Démontrer que $\sum_{n=0}^{+\infty} \int_0^1 x^{2n} (1-x) dx = \int_0^1 \frac{dx}{1+x}$.
- 2. En déduire que $\sum_{k=1}^{+\infty} \frac{(-1)^{k+1}}{k} = \ln(2).$

Corrigé de l'exercice 6

1. Pour tout $n \in \mathbb{N}$, la fonction $f_n : x \mapsto x^{2n}(1-x)$ est continue sur [0,1] (car polynomiale), donc intégrable, la série $\sum_{n>0} f_n$ converge simplement sur [0,1] vers la fonction continue par morceaux

$$S: x \mapsto \left\{ \begin{array}{ll} \frac{1-x}{1-x^2} = \frac{1}{1+x} & \text{ si } x \in [0,1[\\ 0 & \text{ si } x = 1 \end{array} \right.$$

et les f_n sont à valeurs positives, donc d'après le théorème d'intégration terme à terme "à la Fubini", nous avons dans $\mathbb{R}^+ \cup \{+\infty\}$:

$$\int_{0}^{1} S(x)dx = \int_{0}^{1} \left(\sum_{n=0}^{+\infty} f_{n}(x)dx \right) = \sum_{n=0}^{+\infty} \left(\int_{0}^{1} f_{n}(x)dx \right).$$

Et en fait cette égalité a lieu dans \mathbb{R}^+ car

$$\sum_{n=0}^{+\infty} \left(\int_0^1 f_n(x) dx \right) = \sum_{n=0}^{+\infty} \left(\frac{1}{2n+1} - \frac{1}{2n+2} \right) = \sum_{n=0}^{+\infty} \frac{1}{(2n+1)(2n+2)} < +\infty$$

(vu que $\frac{1}{(2n+1)(2n+2)} = O(1/n^2)).$ On a bien montré l'égalité :

$$\int_0^1 \frac{dx}{1+x} = \sum_{n=0}^{+\infty} \left(\int_0^1 f_n(x) dx \right) = \sum_{n=0}^{+\infty} \left(\int_0^1 x^{2n} (1-x) dx \right).$$

2. Considérons les sommes partielles de la série précédente :

(*)
$$S_N = \sum_{n=0}^N \left(\int_0^1 x^{2n} (1-x) dx \right) = \sum_{n=0}^N \left(\frac{1}{2n+1} - \frac{1}{2n+2} \right)$$

$$=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots+\frac{1}{2N+1}-\frac{1}{2N+2}=\sum_{k=1}^{2N+2}\frac{(-1)^{k+1}}{k}$$

(par associativité de la somme finie).

Or, la série $\sum_{k>1} \frac{(-1)^{k+1}}{k}$ converge (d'après le critère spécial des séries alternées), et (S_N) converge

vers $\int_0^1 \frac{dx}{1+x} = \ln(2)$ d'après la question précédente, donc en faisant tendre $N \to +\infty$ dans la relation (*), on obtient

$$\ln(2) = \sum_{k=1}^{+\infty} \frac{(-1)^{k+1}}{k}.$$

Exercice 7 (**Sans le théorème d'intégration terme à terme...) Soit $(a, b) \in (\mathbb{R}_+^*)^2$.

- 1. Pour $t \in]0; 1[$, écrire $\frac{t^{a-1}}{1+t^b}$ comme somme d'une série $\sum_{n\geq 0} u_n(t)$.
- 2. Déterminer la nature de la série $\sum_{n\geq 0}\int_0^1|u_n(t)|dt.$ Que peut-on en déduire ?
- 3. On pose $S_N(t)=\sum\limits_{n=0}^Nu_n(t).$ Démontrer que : $\int_0^1\frac{t^{a-1}}{1+t^b}dt=\lim_{N\to+\infty}\int_0^1S_N(t)dt.$
- 4. En déduire que $\sum_{n=0}^{+\infty} \frac{(-1)^n}{a+nb} = \int_0^1 \frac{t^{a-1}}{1+t^b} dt$, puis la valeur de $\sum_{n=0}^{+\infty} \frac{(-1)^n}{3n+1}$.

Corrigé de l'exercice 7

1. Pour $t \in]0,1[$, on a $-t^b \in]-1,0[\subset]-1,1[$, donc on peut utiliser le développement en série géométrique :

$$\frac{t^{a-1}}{1+t^b} = t^{a-1} \times \frac{1}{1-(-t^b)} = t^{a-1} \sum_{n=0}^{+\infty} (-t^b)^n = \sum_{n=0}^{+\infty} u_n(t),$$

en posant $u_n(t) = (-1)^n t^{a-1+nb}$ pour tout $n \in \mathbb{N}$ et $t \in]0,1[$.

2. Pour tout $n \in \mathbb{N}$, $\int_0^1 |u_n| = \int_0^1 t^{a-1+nb} dt = \left[\frac{t^{a+nb}}{a+nb}\right]_0^1 = \frac{1}{a+nb}$, donc $\sum_{n\geq 0} \int_0^1 |u_n|$ diverge, puisque $\frac{1}{a+nb} \underset{n\to+\infty}{\sim} \frac{1/b}{n}$. On en déduit que le théorème d'intégration terme à terme "à la Fubini" ne s'applique pas ici.

Remarque

Le théorème d'intégration terme à terme sur un segment ne s'applique pas non plus car la série $\sum u_n$ ne converge pas uniformément sur le segment [0,1], étant donné qu'elle ne converge pas simplement (elle diverge grossièrement en t=1).

3. On peut calculer les sommes partielles :

$$\forall (N,t) \in \mathbb{N} \times]0,1[, \qquad S_N(t) = t^{a-1} \sum_{n=0}^N (-t^b)^n = \frac{t^{a-1}}{1+t^b} \times (1-(-t^b)^{N+1}),$$

et on a la majoration:

$$\forall (N,t) \in \mathbb{N} \times]0,1[, \qquad |S_N(t)| \le \varphi(t) = \frac{2t^{a-1}}{1+t^b},$$

avec la fonction φ intégrable sur]0,1[car elle continue, se prolonge continûment en t=1 et vérifie $\varphi(t) \underset{t \to 0^+}{\sim} \frac{2}{t^{1-a}}$ (avec 1-a < 1). De plus, chaque S_N est continue sur]0,1[et la suite

 (S_N) converge simplement sur]0,1[vers la fonction continue $S:t\mapsto \frac{t^{a-1}}{1+t^b}$ sur]0,1[(d'après la première question), donc d'après le théorème de convergence dominée S est intégrable sur]0,1[, ainsi que les S_N , et

$$\int_0^1 \frac{t^{a-1}}{1+t^b} dt = \int_0^1 S = \lim_{N \to +\infty} \int_0^1 S_N.$$

4. Par linéarité de l'intégrale, on a

$$\forall N \in \mathbb{N}, \qquad \int_0^1 S_N = \sum_{n=0}^N \int_0^1 u_n = \sum_{n=0}^N \frac{(-1)^n}{a+nb},$$

donc en faisant tendre $N \to +\infty$ et en utilisant la question précédente, on obtient

$$\sum_{n=0}^{N} \frac{(-1)^n}{a+nb} \underset{N \to +\infty}{\to} \int_0^1 \frac{t^{a-1}}{1+t^b} dt,$$

ce qui prouve la convergence de la série $\sum_{n\geq 0}\frac{(-1)^n}{a+nb}$ et l'égalité :

$$\sum_{n=0}^{+\infty} \frac{(-1)^n}{a+nb} = \int_0^1 \frac{t^{a-1}}{1+t^b} dt.$$

Remarque

On a donc finalement permuté la série et l'intégrale sans utiliser les théorèmes d'intégration terme à terme, mais en utilisant le théorème de convergence dominée avec les sommes partielles.

Application: dans le cas particulier où (a, b) = (1, 3), on obtient

$$\sum_{n=0}^{+\infty} \frac{(-1)^n}{3n+1} = \int_0^1 \frac{dt}{1+t^3} = \int_0^1 \frac{dt}{(1+t)(1-t+t^2)}.$$

On décompose en éléments simples : puisque le facteur $1-t+t^2$ est irréductible sur \mathbb{R} , on a :

$$\frac{1}{(1+t)(1-t+t^2)} = \frac{\alpha}{1+t} + \frac{\beta t + \gamma}{1-t+t^2},$$

avec $(\alpha, \beta, \gamma) \in \mathbb{R}^3$.

En multipliant par 1+t et en évaluant en t=-1, on obtient $\alpha=\frac{1}{3}$. En multipliant par t et en faisant tendre $t\to +\infty$, on obtient $\alpha+\beta=0$, donc $\beta=-\frac{1}{3}$.

Enfin, en évaluant en t=0, on obtient $1=\alpha+\gamma$, donc $\gamma=\frac{2}{3}$.

On a donc

$$\frac{1}{(1+t)(1-t+t^2)} = \frac{1}{3} \left(\frac{1}{1+t} + \frac{2-t}{1-t+t^2} \right) = \frac{1}{3} \left(\frac{1}{1+t} - \frac{1}{2} \left(\frac{2t-1}{t^2-t+1} \right) + \frac{3/2}{t^2-t+1} \right)$$
$$= \frac{1}{3} \left(\frac{1}{1+t} - \frac{1}{2} \left(\frac{2t-1}{t^2-t+1} \right) + \frac{2}{\frac{4}{3}(t-\frac{1}{2})^2+1} \right).$$

En primitivant, on obtient

$$\int_0^1 \frac{dt}{(1+t)(1-t+t^2)} = \frac{1}{3} \left[\ln(1+t) - \frac{1}{2} \ln(t^2-t+1) + \sqrt{3} \arctan\left(\frac{2t-1}{\sqrt{3}}\right) \right]_0^1 = \frac{\ln(2)}{3} + \frac{\pi}{3\sqrt{3}},$$

donc finalement

$$\sum_{n=0}^{+\infty} \frac{(-1)^n}{3n+1} = \frac{\ln(2)}{3} + \frac{\pi}{3\sqrt{3}}.$$

Exercice 8 (**Fonction θ de Jacobi)

On pose $\theta: x \mapsto \sum_{n=1}^{+\infty} e^{-n^2 \pi x}$.

On pose, pour $s \in \mathbb{C}$, $\zeta(s) = \sum_{n=1}^{+\infty} \frac{1}{n^s}$ et $\Gamma(s) = \int_0^{+\infty} e^{-t} t^{s-1} dt$.

- 1. Montrer que si Re(s) > 1, alors $\zeta(s)$ est défini. Montrer que si Re(s) > 0, alors $\Gamma(s)$ est défini.
- 2. Déterminer l'intervalle de définition de la fonction θ , et montrer qu'elle est C^{∞} sur cet inter-
- 3. Montrer que pour tout $s \in \mathbb{C}$ tel que $\operatorname{Re}(s) > 1$, on a : $\int_0^{+\infty} \theta(t) t^{\frac{s}{2}-1} dt = \pi^{-\frac{s}{2}} \Gamma\left(\frac{s}{2}\right) \zeta(s)$.

Corrigé de l'exercice 8

1. Notons s = x + iy avec $(x, y) \in \mathbb{R}^2$. On a

$$\forall n \in \mathbb{N}^*, \qquad \left| \frac{1}{n^s} \right| = |e^{-(x+iy)\ln(n)}| = |e^{-x\ln(n)}e^{-iy\ln(n)}| = e^{-x\ln(n)} = \frac{1}{n^x},$$

donc la série $\zeta(s)$ converge absolument si x = Re(s) > 1.

En outre, pour tout réel t > 0, on obtient de la même façon

$$|e^{-t}t^{s-1}| = e^{-t}t^{x-1},$$

et la fonction $t \mapsto e^{-t}t^{x-1}$ est intégrable sur $]0, +\infty[$ lorsque x > 0, puisqu'elle est continue, elle est équivalente à $\frac{1}{t^{1-x}}$ en 0^+ (avec 1-x < 1), et elle est négligeable devant $1/t^2$ en $+\infty$. Donc $t\mapsto e^{-t}t^{s-1}$ est intégrable sur $]0,+\infty[$ lorsque x=Re(s)>0, ce qui montre que l'intégrale $\Gamma(s)$ est bien définie.

2. Soit $x \in \mathbb{R}$. Si $x \leq 0$, alors la suite $(e^{-n^2\pi x})_{n\in\mathbb{N}^*}$ ne tend pas vers 0, donc la série $\theta(x) = \sum_{n=1}^{+\infty} e^{-n^2\pi x}$ diverge. Si x>0, on a $e^{-n^2\pi x} = o(1/n^2)$ donc la série $\theta(x)$ converge.

L'intervalle de définition de la fonction θ est donc $]0, +\infty[$.

On utilise ensuite le théorème de dérivation terme à terme itéré pour une série de fonctions.

Les fonctions $u_n: x \mapsto e^{-n^2\pi x}$ sont de classe \mathcal{C}^{∞} sur $]0, +\infty[$ (car elles le sont sur \mathbb{R}), et $\forall (k, n) \in \mathbb{N} \times \mathbb{N}^*$, $u_n^{(k)}: x \mapsto (-1)^k \pi^k n^{2k} e^{-n^2\pi x}$. De plus, la série $\sum_{n\geq 1} u_n^{(k)}$ converge normalement donc

uniformément sur tout intervalle $[a, +\infty[$ (vu la majoration $|u_n^{(k)}(x)| \le \pi^k n^{2k} e^{-n^2 \pi a} = o(1/n^2))$, donc on en déduit que $\theta = \sum_{n=1}^{\infty} u_n$ est de classe \mathcal{C}^{∞} sur $]0, +\infty[$ et on a :

$$\forall (k,x) \in \mathbb{N} \times]0, +\infty[, \qquad \theta^{(k)}(x) = (-1)^k \pi^k \sum_{n=1}^{+\infty} n^{2k} e^{-n^2 \pi x}.$$

3. Soit $s \in \mathbb{C}$ tel que Re(s) = x > 1. On a

$$\forall t > 0, \qquad \theta(t)t^{\frac{s}{2}-1} = \sum_{n=1}^{+\infty} f_n(t),$$

avec $f_n(t) = e^{-n^2 \pi t} t^{\frac{s}{2}-1}$.

Les f_n sont des fonctions continues sur $]0, +\infty[$, la série $\sum_{n>1} f_n$ converge simplement sur $]0,+\infty[$ vers la fonction $t\mapsto \theta(t)t^{\frac{s}{2}-1}$ qui est bien continue par morceaux (car continue), et on a par changement de variable linéaire

$$\forall n \in \mathbb{N}^*, \ \int_0^{+\infty} |f_n| = \int_0^{+\infty} e^{-n^2 \pi t} t^{\frac{x}{2} - 1} dt = \frac{1}{(\pi n^2)^{x/2}} \int_0^{+\infty} e^{-u} u^{\frac{x}{2} - 1} du = \frac{\pi^{-x/2} \Gamma(x/2)}{n^x},$$

donc les f_n sont intégrables et on a

$$\sum_{n \ge 1} \int_0^{+\infty} |f_n| = \pi^{-x/2} \Gamma(x/2) \sum_{n=1}^{+\infty} \frac{1}{n^x} < +\infty.$$

Donc d'après le théorème d'intégration terme à terme, la fonction $\sum_{n=1}^{+\infty} f_n : t \mapsto \theta(t) t^{\frac{s}{2}-1}$ est intégrable sur $]0, +\infty[$ et

$$\int_0^{+\infty} \theta(t) t^{\frac{s}{2} - 1} dt = \int_0^{+\infty} \left(\sum_{n=1}^{+\infty} f_n \right) = \sum_{n=1}^{+\infty} \left(\int_0^{+\infty} f_n \right) = \sum_{n=1}^{+\infty} \frac{\pi^{-s/2} \Gamma(s/2)}{n^s} = \pi^{-s/2} \Gamma(s/2) \zeta(s).$$

(par les mêmes calculs qu'auparavant, avec le nombre complexe s à la place du réel x).

IIIIntégrales à paramètre

Exercice 9 (**) Déterminer $\lim_{x \to 0^+} \int_0^1 \frac{1 - t^x}{1 - t} dt$.

Corrigé de l'exercice 9

Notons $f(x,t) = \frac{1-t^x}{1-t} = \frac{1-e^{x\ln(t)}}{1-t}$ pour tout $t \in]0,1[$ et $x \in \mathbb{R}$. On utilise la version continue du théorème de convergence dominée.

- * Pour tout $x \in \mathbb{R}$, la fonction $t \mapsto f(x,t)$ est continue par morceaux sur]0,1[(car continue).
- * Pour tout $t \in]0,1[$, la fonction $f(x,t) \underset{x \to 0^+}{\to} \ell(t) = 0$, et la fonction ℓ est continue par morceaux
- * Pour tout $t \in]0,1[$ et pour tout $x \in [0,A]$ (avec A > 0), on

$$|f(x,t)| \le \varphi_A(t) = \frac{1 - e^{A \ln(t)}}{1 - t} = \frac{1 - t^A}{1 - t},$$

et φ_A est intégrable sur]0,1[car continue, prolongeable par continuité en 0, mais aussi en 1 (faire un DL_1 , on obtient $\varphi_A(t) \underset{t\to 1^-}{\rightarrow} A$).

On en déduit que $x\mapsto \int_0^1 \frac{1-t^x}{1-t}dt$ est bien définie sur \mathbb{R}_+^* (mais aussi en 0) et $\lim_{x\to 0^+} \int_0^1 \frac{1-t^x}{1-t}dt = \int_0^1 \ell(t)dt = 0$ (en fait il y a continuité en 0 de l'intégrale à paramètre).

Exercice 10 (**)

Soit $f:[0,1]\to\mathbb{R}$ continue. Montrer que $\int_0^1 \frac{h}{h^2+x^2} f(x) dx \xrightarrow[h\to 0^+]{\pi} \frac{\pi}{2} f(0)$.

Corrigé de l'exercice 10

Notons, pour h > 0,

$$F(h) = \int_0^1 \frac{h}{h^2 + x^2} f(x) dx$$

(cette intégrale à paramètre est bien définie car on intègre une fonction continue sur un segment). L'idée est bien sûr d'appliquer la version continue du théorème de convergence dominée lorsque $h \to 0^+$, mais ça ne marche pas car on ne peut pas dominer $\frac{h}{h^2+x^2}f(x)$ pour h au voisinage de 0^+ par une fonction intégrable sur]0,1[, vu que

$$\forall x > 0, \quad \sup_{h \in \mathbb{R}^+} \frac{h}{h^2 + x^2} = \frac{1}{2x}$$

(faire une étude de fonction), et on ne sait pas si $x \mapsto \frac{f(x)}{2x}$ est intégrable sur]0,1[(c'est faux si $f(0) \neq 0$ d'ailleurs).

Pour h>0 fixé, effectuons d'abord le changement de variable linéaire x=hu pour homogénéiser le dénominateur :

$$F(h) = \int_0^1 \frac{h}{h^2 + x^2} f(x) dx = \int_0^{1/h} \frac{f(hu)}{1 + u^2} du.$$

On peut ensuite enlever la dépendance en h des bornes de l'intégrale afin de réécrire ceci comme une intégrale à paramètre :

$$F(h) = \int_0^{+\infty} g(h, u) du, \text{ avec } g(h, u) = \begin{cases} \frac{f(hu)}{1 + u^2} & \text{si } 0 \le u \le \frac{1}{h} \\ 0 & \text{si } u > \frac{1}{h} \end{cases}$$

Réessayons maintenant d'appliquer la version continue du théorème de convergence dominée :

- * Pour tout h > 0, la fonction $u \mapsto g(h, u)$ est continue par morceaux sur $[0, +\infty[$ (car elle est continue sur [0, 1/h[, sur $]1/h, +\infty[$ et possède des limites finies à gauche et à droite en 1/h).
- * Pour tout $u \in \mathbb{R}^+$, $g(h,u) \underset{h \to 0^+}{\to} \ell(u) = \frac{f(0)}{1+u^2}$ (car pour h assez petit, on a $1/h \geq u$, donc $g(h,u) = \frac{f(hu)}{1+u^2}$, et $f(hu) \underset{h \to 0^+}{\to} f(0)$ par continuité de f en 0). La fonction limite ℓ est bien continue par morceaux (car continue) sur $[0,+\infty[$.
- * On a la domination :

$$\forall (h, u) \in]0, +\infty[\times[0, +\infty[, \qquad |g(h, u)| \le \varphi(u) = \frac{\|f\|_{\infty, [0, 1]}}{1 + u^2},$$

avec φ intégrable sur $[0, +\infty[$ (c'est un multiple de la dérivée de arctan).

Donc le théorème s'applique et on obtient :

$$F(h) \underset{h \to 0^+}{\to} \int_0^{+\infty} \ell(u) du = \int_0^{+\infty} \frac{f(0)}{1 + u^2} du = \frac{\pi}{2} f(0).$$

Exercice 11 (**)

Pour x > 0, on pose $\varphi(x) = \int_0^1 e^{-\frac{x}{t}} dt$.

- 1. Montrer que φ est de classe C^{∞} sur \mathbb{R}_{+}^{*} .
- 2. Calculer $\varphi''(x)$.

Corrigé de l'exercice 11

Exercice 12 (**)

On note (lorsque cette intégrale converge) $\varphi(x) = \int_0^{+\infty} \frac{1 - \cos(tx)}{t^2} e^{-t} dt$.

- 1. Montrer que φ est définie sur \mathbb{R} .
- 2. Montrer que pour tout $x \in \mathbb{R}$, l'intégrale $\int_0^{+\infty} e^{-t} \cos(tx) dt$ converge et que $\int_0^{+\infty} e^{-t} \cos(tx) dt = \frac{1}{1+x^2}.$
- 3. Démontrer que φ est de classe \mathcal{C}^2 sur \mathbb{R} et donner l'expression de $\varphi'(x)$ et de $\varphi''(x)$ sous la forme d'intégrales, pour tout $x \in \mathbb{R}$.
- 4. Calculer la valeur de $\varphi(0)$ et de $\varphi'(0)$.
- 5. Déduire des 2 questions précédentes la valeur explicite de $\varphi(x)$.

Corrigé de l'exercice 12

Exercice 13 (*)

Soit I un intervalle contenant 0 et $f: I \to \mathbb{R}$ une fonction de classe C^n s'annulant en 0, où $n \in \mathbb{N}^*$. On définit la fonction $g: I \to \mathbb{R}$ par $g(t) = \frac{f(t)}{t}$ si $t \neq 0$ et g(0) = f'(0).

- 1. Montrer que pour tout $x \in I$, $g(x) = \int_0^1 f'(tx)dt$.
- 2. Montrer que g est de classe C^{n-1} et calculer $g^{(k)}(0)$ pour tout $k \in \{0, \ldots, n-1\}$.

Corrigé de l'exercice 13

Exercice 14 (**Intégrale de Gauss)

Le but de cet exercice est de calculer la valeur de l'intégrale $I = \int_{-\infty}^{+\infty} e^{-t^2} dt$.

1. Justifier que cette intégrale converge.

On introduit les fonction f et g définies sur \mathbb{R}_+ par $f(x) = \int_0^x e^{-t^2} dt$ et $g(x) = \int_0^1 \frac{e^{-x^2(1+t^2)}}{1+t^2} dt$.

- 2. Montrer que f et g sont dérivables, et qu'on $a: \forall x \in \mathbb{R}_+, g'(x) = -2f'(x)f(x)$.
- 3. Montrer qu'on a $g(x) \underset{x \to +\infty}{\longrightarrow} 0.$ En déduire $\lim_{x \to +\infty} \! f(x).$
- 4. En déduire enfin la valeur de I.

Corrigé de l'exercice 14

Exercice 15 (**Fonction Gamma d'Euler)

Pour $x \in \mathbb{R}$, on pose $\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt$.

- 1. Montrer que Γ a pour domaine de définition \mathbb{R}_{+}^{*} .
- 2. Montrer: $\forall x > 0$, $\Gamma(x+1) = x\Gamma(x)$. Que vaut $\Gamma(n)$ pour $n \in \mathbb{N} \setminus \{0\}$?
- 3. Montrer que Γ est continue.
- 4. En déduire un équivalent de Γ en 0^+ .
- 5. Montrer que Γ est C^{∞} et calculer ses dérivées successives.
- 6. Montrer que Γ est convexe.

Corrigé de l'exercice 15

Notons $f(x,t) = t^{x-1}e^{-t} = e^{(x-1)\ln(t)-t}$ pour $x \in \mathbb{R}$ et $t \in]0, +\infty[$.

1. Pour tout $x \in \mathbb{R}$, la fonction $t \mapsto f(x,t)$ est continue sur $]0,+\infty[$. De plus, $f(x,t) \underset{t\to 0^+}{\sim} t^{x-1} = \frac{1}{t^{1-x}}$, donc $\int_0^1 f(x,t)dt$ converge si et seulement si 1-x < 1, c'està-dire x > 0. Ensuite on a $f(x,t) = o(1/t^2)$, donc $\int_1^{+\infty} f(x,t)dt$ converge pour tout $x \in \mathbb{R}$.

Donc finalement, l'intégrale impropre $\Gamma(x)$ converge si et seulement si x > 0.

Remarque

Vu que $f(x,t) \ge 0$, on a en fait montré que $t \mapsto f(x,t)$ est intégrable sur $]0,+\infty[$ pour tout x>0.

2. Soit x > 0. Par intégration par parties généralisée, on obtient

$$\Gamma(x+1) = \int_0^{+\infty} t^x e^{-t} dt = \left[-t^x e^{-t} \right]_0^{\infty} + \int_0^{+\infty} x t^{x-1} e^{-t} dt = x \Gamma(x)$$

(ce calcul est valable car $t \mapsto t^x e^{-t}$ possède des limites finies en 0^+ et en $+\infty$). Par récurrence, on en déduit simplement que $\Gamma(n) = (n-1)!$ pour tout $n \in \mathbb{N}^*$.

- 3. On utilise le théorème de continuité des intégrales à paramètre.
 - * Pour tout $x \in \mathbb{R}$, la fonction $t \mapsto f(x,t)$ est continue par morceaux sur $]0,+\infty[$ (car continue).
 - * Pour tout $t \in]0, +\infty[$, la fonction $x \mapsto f(x, t)$ est continue sur \mathbb{R} (donc sur $]0, +\infty[$).
 - * Hypothèse de domination sur tout segment : pour tout segment $[a,b] \subset]0,+\infty[$, on a pour tout $(x,t) \in [a,b] \times]0,+\infty[$:

$$|f(x,t)| \le \begin{cases} e^{(a-1)\ln(t)-t} = t^{a-1}e^{-t} & \text{si } t < 1\\ e^{(b-1)\ln(t)-t} = t^{b-1}e^{-t} & \text{si } t > 1 \end{cases},$$

donc a fortiori:

$$|f(x,t)| \le \varphi_{a,b}(t) = f(a,t) + f(b,t),$$

avec $\varphi_{a,b}$ intégrable sur $]0,+\infty[$ (comme somme de deux fonctions intégrables d'après la question 1.).

Donc d'après le théorème de continuité des intégrales à paramètre, Γ est continue sur $]0,+\infty[$.

- 4. On utilise la relation $\Gamma(x+1) = x\Gamma(x)$, valable pour tout x > 0. Puisque Γ est continue en 1, on a $\Gamma(x+1) \underset{x \to 0^+}{\to} \Gamma(1) = 0! = 1$, donc $x\Gamma(x) \underset{x \to 0^+}{\to} 1$, c'est-à-dire $\Gamma(x) \underset{x \to 0^+}{\sim} \frac{1}{x}$.
- 5. On utilise le théorème de dérivation itérée des intégrales à paramètre.
 - * Pour tout $t \in]0, +\infty[$, la fonction $x \mapsto f(x, t)$ est de classe \mathcal{C}^{∞} sur \mathbb{R} (donc sur $]0, +\infty[$), avec

$$\forall k \in \mathbb{N}, \ \forall (x,t) \in]0, +\infty[^2, \qquad \frac{\partial^k f}{\partial x^k}(x,t) = \ln(t)^k t^{x-1} e^{-t}.$$

- * Toutes ces dérivées partielles $\frac{\partial^k f}{\partial x^k}$ sont continues par morceaux sur $]0, +\infty[$ par rapport à la variable d'intégration t (car continues). On montrera leur intégrabilité par domination au point suivant.
- * Toutes ces dérivées partielles $\frac{\partial^k f}{\partial x^k}$ peuvent se dominer localement en x par des fonctions intégrables sur $]0, +\infty[$ (c'est le point délicat).

La majoration est différente selon que $t \in]0,1[$ ou $t \in [1,+\infty[$. Etant donné un segment $[a,b] \subset]0,+\infty[$, on a, pour tout $(k,x,t) \in \mathbb{N} \times [a,b] \times]0,+\infty[$:

$$\left| \frac{\partial^k f}{\partial x^k}(x,t) \right| = |\ln(t)|^k e^{(x-1)\ln(t)-t} \le \varphi_{k,a,b}(t) = \begin{cases} |\ln(t)|^k e^{(a-1)\ln(t)-t} & \text{si } t < 1 \\ |\ln(t)|^k e^{(b-1)\ln(t)-t} & \text{si } t \ge 1 \end{cases}$$

Reste à montrer que la fonction

$$\varphi_{k,a,b}: t \mapsto \left\{ \begin{array}{ll} |\ln(t)|^k t^{a-1} e^{-t} & \text{si } t < 1\\ |\ln(t)|^k t^{b-1} e^{-t} & \text{si } t \ge 1 \end{array} \right.$$

est intégrable sur $]0, +\infty[$. Tout d'abord, elle est continue sur $]0, +\infty[$ (limites identiques en 1^+ et 1^-). Ensuite, on a

$$\varphi_{k,a,b}(t) \underset{t \to +\infty}{\sim} |\ln(t)|^k t^{b-1} e^{-t} = o(1/t^2),$$

ce qui montre que $\varphi_{k,a,b}$ est intégrable au voisinage de $+\infty$. Enfin :

$$\varphi_{k,a,b}(t) \underset{t \to 0^+}{\sim} |\ln(t)|^k t^{a-1} = o(1/t^{\beta})$$

pour tout réel β tel que $\beta + a - 1 > 0$. En choisissant $\beta \in]1 - a, 1[$ (possible car 1 - a < 1, par exemple $\beta = 1 - a/2$), cela montre que $\varphi_{k,a,b}$ est intégrable au voisinage de 0^+ . En définitive, $\varphi_{k,a,b} \in L^1(]0, +\infty[,\mathbb{R})$.

On en déduit d'après le théorème de dérivation itérée d'une intégrale à paramètre que $\Gamma \in \mathcal{C}^{\infty}(]0,+\infty[,\mathbb{R})$ et pour tout $k \in \mathbb{N}$:

$$\forall (x,t) \in]0, +\infty[^2, \qquad \Gamma^{(k)}(x) = \int_0^{+\infty} \ln^k(t) t^{x-1} e^{-t} dt.$$

6. En particulier $\Gamma'': x \mapsto \int_0^{+\infty} \ln^2(t) t^{x-1} e^{-t} dt$ est positive donc Γ est convexe.

Exercice 16 (***Transformée de Laplace)

Soit $f: \mathbb{R}^+ \to \mathbb{C}$ une fonction continue. On pose, pour $p \in \mathbb{R}$:

$$\mathcal{L}(f): p \mapsto \int_0^{+\infty} f(t)e^{-pt}dt$$

(lorsque cette intégrale converge). C'est la transformée de Laplace de f.

On note C(f) l'ensemble des $p \in \mathbb{R}$ tels que $\mathcal{L}(f)(p)$ converge, et A(f) l'ensemble des $p \in \mathbb{R}$ tels que $\mathcal{L}(f)(p)$ converge absolument.

- 1. Montrer que s'ils ne sont pas vides, C(f) et A(f) sont des intervalles de \mathbb{R} non majorés.
- 2. Si f est continue et bornée sur \mathbb{R}^+ , montrer que $\mathcal{L}(f)$ est une fonction de classe \mathcal{C}^{∞} sur $]0; +\infty[$, et que pour tout $n \in \mathbb{N}$, $\mathcal{L}(f)^{(n)}(p) \underset{p \to +\infty}{\longrightarrow} 0$.
- 3. On suppose que $\int_0^{+\infty} f(t)dt$ converge. Montrer que $\mathcal{L}(f)$ est continue en 0.
- 4. Application : calcular $\int_0^{+\infty} \frac{\sin(x)}{x} dx$.

Corrigé de l'exercice 16

Remarquons que la continuité de f sur \mathbb{R}^+ entraı̂ne celle de $t\mapsto f(t)e^{-pt}$ pour tout réel p. L'intégrale $\mathcal{L}(f)(p)=\int_0^{+\infty}f(t)e^{-pt}dt$ est donc une intégrale impropre en $+\infty$.

1. * Soit $p_0 \in A(f)$. Pour tout réel $p > p_0$, on a $p \in A(f)$. Cela vient du fait que

$$\forall t > 0, \ \forall p > p_0, \qquad |f(t)e^{-pt}| < |f(t)|e^{-p_0t}.$$

donc la convergence absolue de l'intégrale $\mathcal{L}(f)(p_0)$ entraı̂ne celle de $\mathcal{L}(f)(p)$.

* Soit maintenant $p_0 \in C(f)$, c'est-à-dire que l'intégrale $\mathcal{L}(f)(p_0)$ converge (pas nécessairement absolument). Montrons que pour tout réel $p > p_0$, on a $p \in C(f)$. On procède en intégrant par parties : par hypothèse, la primitive $G: x \mapsto \int_0^x f(t)e^{-p_0t}dt$ possède une limite finie $L \in \mathbb{C}$ lorsque $x \to +\infty$, donc pour tout réel $x \geq 0$:

$$\int_0^x f(t)e^{-pt}dt = \int_0^x f(t)e^{-p_0t}e^{(p_0-p)t}dt = \left[G(t)e^{(p_0-p)t}\right]_0^x + (p-p_0)\int_0^x G(t)e^{(p_0-p)t}dt,$$

c'est-à-dire (puisque G(0) = 0):

$$\int_0^x f(t)e^{-pt}dt = G(x)e^{(p_0-p)x} + (p-p_0)\int_0^x G(t)e^{(p_0-p)t}dt.$$

Or, G est bornée sur \mathbb{R}^+ (car elle est continue et possède une limite finie en $+\infty$), et $p_0-p<0$ donc $G(x)e^{(p_0-p)x} \underset{x\to +\infty}{\to} 0$.

En outre, l'intégrale $\int_0^{+\infty} G(t)e^{(p_0-p)t}dt$ est absolument convergente donc convergente car

$$\forall t \in \mathbb{R}^+, \qquad |G(t)e^{(p_0-p)t}| \le ||G||_{\infty,\mathbb{R}^+} e^{(p_0-p)t}$$

et $t \mapsto e^{(p_0-p)t}$ est intégrable sur \mathbb{R}^+ . Donc par somme, $\int_0^x f(t)e^{-pt}dt$ possède une limite finie lorsque $x \to +\infty$, c'est-à-dire $p \in C(f)$.

Ceci montre que A(f) et C(f) sont des intervalles réels non majorés, lorsqu'ils ne sont pas vides.

2. Utilisons le théorème de dérivation itérée d'une intégrale à paramètre.

Notons $h(p,t) = f(t)e^{-pt}$ pour $(p,t) \in \mathbb{R} \times \mathbb{R}^+$.

* Pour tout réel $t \geq 0$, la fonction $p \mapsto h(p,t)$ est de classe \mathcal{C}^{∞} sur \mathbb{R} (donc sur $]0,+\infty[$), et on a, pour tout $n \in \mathbb{N}$:

$$\forall (p,t) \in \mathbb{R} \times \mathbb{R}^+, \qquad \frac{\partial^n h}{\partial p^n}(p,t) = (-t)^n f(t) e^{-pt}.$$

- * Toutes ces dérivées partielles $\frac{\partial^n h}{\partial p^n}$ sont continues par morceaux (car continues) sur \mathbb{R}^+ par rapport à t. Elles sont également intégrables sur \mathbb{R}^+ comme le montre la domination au point suivant.
- * Toutes ces dérivées partielles $\frac{\partial^n h}{\partial p^n}$ sont dominées localement en x par des fonctions intégrables sur \mathbb{R}^+ car pour tout réel a>0:

$$\forall (n,p,t) \in \mathbb{N} \times [a,+\infty[\times \mathbb{R}^+, \qquad \left| \frac{\partial^n h}{\partial p^n}(p,t) \right| = t^n |f(t)| e^{-pt} \leq \|f\|_{\infty,\mathbb{R}^+} t^n e^{-at} = \varphi_{n,a}(t),$$

(puisque f est bornée sur \mathbb{R}^+ par hypothèse) et la fonction $\varphi_{n,a}$ est intégrable sur \mathbb{R}^+ (car continue sur \mathbb{R}^+ et négligeable devant $1/t^2$ en $+\infty$).

On en déduit que l'intégrale à paramètre $\mathcal{L}(f)$ est bien définie et de classe \mathcal{C}^{∞} sur l'intervalle $]0,+\infty[$. De plus, pour tout $(n,p)\in\mathbb{N}\times]0,+\infty[$:

$$\mathcal{L}(f)^{(n)}(p) = (-1)^n \int_0^{+\infty} t^n f(t) e^{-pt} dt = \frac{(-1)^n}{p^{n+1}} \int_0^{+\infty} f(y/p) y^n e^{-y} dy$$

(par changement de variable linéaire), donc

$$\left| \mathcal{L}(f)^{(n)}(p) \right| \le \frac{\|f\|_{\infty,\mathbb{R}^+}}{p^{n+1}} \underbrace{\int_0^{+\infty} y^n e^{-y}}_{=\Gamma(n+1)} = \frac{n! \|f\|_{\infty,\mathbb{R}^+}}{p^{n+1}} \underset{p \to +\infty}{\to} 0$$

(l'intégrale $\Gamma(n+1)$ se calcule facilement par récurrence).

3. Ici, on suppose que $0 \in C(f)$, donc d'après la question 1., l'intégrale $\mathcal{L}(f)(p) = \int_0^{+\infty} f(t)e^{-pt}dt$ converge pour tout réel p > 0.

converge pour tout réel $p \geq 0$. Notons $F: x \mapsto \int_0^x f$ la primitive de f nulle en 0. Par hypothèse de convergence de l'intégrale $\int_0^{+\infty} f$, il existe $\ell \in \mathbb{C}$ tel que $F(x) \underset{x \to +\infty}{\to} \ell$.

Montrons que $\mathcal{L}(f)(p)$ tend vers $\mathcal{L}(f)(0) = \int_0^{+\infty} f = \ell$ lorsque $p \to 0^+$. Pour tout réel p > 0, on a en intégrant par parties :

$$\begin{aligned} |\mathcal{L}(f)(p) - \mathcal{L}(f)(0)| &= \left| \int_0^{+\infty} f(t)e^{-pt}dt - \int_0^{+\infty} f(t)dt \right| = \left| \underbrace{\left[F(t)e^{-pt} \right]_0^{+\infty}}_{=0} + p \int_0^{+\infty} F(t)e^{-pt}dt - \ell \right| \\ &= \left| p \int_0^{+\infty} F(t)e^{-pt}dt - \ell \underbrace{\int_0^{+\infty} pe^{-pt}dt}_{=0} \right| \le p \int_0^{+\infty} |F(t) - \ell|e^{-pt}dt. \end{aligned}$$

(cette dernière intégrale converge bien car $F - \ell$ est bornée sur \mathbb{R}^+ , puisque continue et de limite nulle en $+\infty$). Fixons un réel $\varepsilon > 0$. Par définition de la limite, il existe un réel A > 0 tel que

$$t \ge A \implies |F(t) - \ell| \le \varepsilon.$$

En découpant l'intégrale et en notant $M=\sup_{t\in\mathbb{R}^+}|F(t)-\ell|,$ on a donc, pour tout réel p>0:

$$|\mathcal{L}(f)(p) - \mathcal{L}(f)(0)| \le p \int_0^A \underbrace{|F(t) - \ell|}_{\le M} e^{-pt} dt + p \int_A^{+\infty} \underbrace{|F(t) - \ell|}_{\le \varepsilon} e^{-pt} dt$$

$$\leq pM\int_0^A\underbrace{e^{-pt}}_{\leq 1}dt + \varepsilon\int_A^{+\infty}pe^{-pt}dt \leq pMA + \varepsilon\underbrace{\int_0^{+\infty}pe^{-pt}dt}_{=1} = pMA + \varepsilon.$$

Il reste à faire tendre $p \to 0^+$: puisque $pMA \underset{p \to 0^+}{\to} 0$, il existe $\delta > 0$ tel que

$$0$$

Ceci montre bien que $\mathcal{L}(f)(p) \underset{p \to 0^+}{\to} \mathcal{L}(f)(0)$, et donc $\mathcal{L}(f)$ est continue en 0.

4. On sait déjà que l'intégrale $I=\int_0^{+\infty}\frac{\sin(x)}{x}dx$ converge (en procédant par IPP, voir les autres exercices). D'après ce qui précède, I est donc la limite lorsque $p\to 0^+$ de la transformée de Laplace

$$\mathcal{L}(f)(p) = \int_0^{+\infty} \frac{\sin(t)}{t} e^{-pt} dt,$$

définie pour tout réel p > 0. L'idée est de calculer explicitement cette intégrale à paramètre, en passant par sa dérivée. D'après la question 2., $\mathcal{L}(f)$ est dérivable sur $]0, +\infty[$, et en dérivant sous le signe intégral, on a

$$\mathcal{L}(f)'(p) = -\int_0^{+\infty} \sin(t)e^{-pt}dt = -Im\left(\int_0^{+\infty} e^{(i-p)t}dt\right) = -Im\left(\frac{1}{i-p}\right) = -\frac{1}{1+p^2}.$$

Donc en primitivant, on en déduit qu'il existe une constante réelle K telle que

$$\forall p > 0, \quad \mathcal{L}(f)(p) = K - \arctan(p).$$

En outre, on sait (toujours d'après la question 2.), que $\mathcal{L}(f)$ possède une limite nulle en $+\infty$, donc $K = \frac{\pi}{2}$ et finalement l'intégrale cherchée vaut :

$$I = \lim_{p \to 0^+} \mathcal{L}(f)(p) = \lim_{p \to 0^+} \left(\frac{\pi}{2} - \arctan(p)\right) = \frac{\pi}{2}.$$

Exercice 17 (**Transformée de Fourier)

Pour $f \in L^1(\mathbb{R}, \mathbb{C})$, c'est-à-dire pour f continue par morceaux et intégrable de \mathbb{R} dans \mathbb{C} , on définit sa **transformée de Fourier** :

$$\hat{f}: x \mapsto \int_{-\infty}^{+\infty} f(t)e^{-ixt}dt.$$

- 1. Montrer que l'application $f \mapsto \hat{f}$ est linéaire de $L^1(\mathbb{R}, \mathbb{C})$ dans $\mathcal{B}(\mathbb{R}, \mathbb{C})$.
- 2. Montrer que si pour tout $n \in \mathbb{N}$, l'application $t \mapsto t^n f(t)$ est intégrable sur \mathbb{R} , alors \hat{f} est de classe C^{∞} , et donner l'expression de ses dérivées successives.
- 3. En dérivant une fois, en déduire la transformée de Fourier de la fonction $f:t\mapsto e^{-\frac{t^2}{2}}$.

Corrigé de l'exercice 17

Exercice 18 (***)

Pour x > 0, on pose $F(x) = \int_0^{+\infty} \frac{dt}{\sqrt{1 + t^2}\sqrt{t^2 + x^2}}$.

- 1. Montrer que F est bien définie sur \mathbb{R}_+^* .
- 2. Montrer que $F(x) \xrightarrow[x \to 0^+]{} +\infty$.
- 3. (a) On sait que sh réalise une bijection de $\mathbb R$ dans $\mathbb R$. On note argsh sa réciproque. Déterminer une expression (à l'aide d'un logarithme) de argsh.
 - (b) Calculer argsh'.
 - (c) En déduire, pour $\alpha > 0$ et x > 0, la valeur de $I_{\alpha}(x) = \int_{0}^{\alpha} \frac{dt}{\sqrt{t^{2} + x^{2}}}$.
 - (d) Calculer un équivalent de $I_{\alpha}(x)$ lorsque $x \to 0$.
- 4. En déduire un équivalent de F en 0.
- 5. Grâce à un changement de variable, calculer un équivalent de F en $+\infty$.

Corrigé de l'exercice 18

Exercice 19 (***Equivalent d'intégrale de type affine)

- 1. Déterminer un équivalent de $\Phi(t) = \int_0^1 \frac{dx}{(1+x+x^2)^t}$ lorsque $t \to +\infty$. Pour cela, on utilisera une approximation affine de $x \mapsto \frac{1}{1+x+x^2}$ en 0 (DL d'ordre 1) et un découpage d'intégrale adéquat.
- 2. Généralisation : soit $f \in \mathcal{C}^0([0;a];\mathbb{R})$ avec a > 0 réel. On suppose que f(0) = 1, f est dérivable en 0 avec f'(0) = k < 0, et $\forall x \in]0;a]$, |f(x)| < 1. Déterminer un équivalent lorsque $n \to +\infty$ de la suite définie par $I_n = \int_0^a f(x)^n dx$.

Corrigé de l'exercice 19

1. La fonction $f: x \mapsto \frac{1}{1+x+x^2}$ est continue et strictement positive sur [0,1], et vérifie f(x) = 1 - x + o(x) au voisinage de 0. Conjecturons un équivalent de $\Phi(t) = \int_0^1 f(x)^t dx$ lorsque $t \to +\infty$. Si $\alpha > 0$ est voisin de 0, alors

$$\int_0^\alpha f(x)^t dx \simeq \int_0^\alpha (1-x)^t dx = \frac{1}{t+1} - \frac{(1-\alpha)^{t+1}}{t+1} \underset{t \to +\infty}{\sim} \frac{1}{t}.$$

De plus :

$$\int_{\alpha}^{1} f(x)^{t} dx \leq \int_{\alpha}^{1} \left(\frac{1}{1+\alpha}\right)^{t} dx = \left(\frac{1}{1+\alpha}\right)^{t} (1-\alpha) = \underset{t \to +\infty}{o} \left(\frac{1}{t}\right),$$

donc il semble que $\Phi(t) \underset{t \to +\infty}{\sim} \frac{1}{t}$.

Prouvons cela rigoureusement : fixons un réel $\varepsilon > 0$. Vu que f(x) = 1 - x + o(x) au voisinage de 0, il existe un réel $\alpha \in]0,1[$ tel que

$$x \in [0, \alpha] \implies |f(x) - 1 + x| \le \varepsilon x \implies 1 - (1 + \varepsilon)x \le f(x) \le 1 - (1 - \varepsilon)x.$$

Quitte à diminuer α , on a $1-(1+\varepsilon)\alpha>0$, et donc pour tout réel t>0:

$$x \in [0, \alpha] \implies 0 \le (1 - (1 + \varepsilon)x)^t \le f(x)^t \le (1 - (1 - \varepsilon)x)^t,$$

ce qui entraîne par croissance de l'intégrale :

$$\forall t > 0, \qquad \frac{1 - (1 - (1 + \varepsilon)\alpha)^{t+1}}{(1 + \varepsilon)(t+1)} \le \int_0^\alpha f(x)^t dx \le \frac{1 - (1 - (1 - \varepsilon)\alpha)^{t+1}}{(1 - \varepsilon)(t+1)}.$$

Lorsque $t\to +\infty$, le membre de gauche est équivalent à $\frac{1}{1+\varepsilon}\times \frac{1}{t}$, alors que celui de droite est équivalent à $\frac{1}{1-\varepsilon}\times \frac{1}{t}$. Donc il existe $T_0>0$ tel que

$$t \ge T_0 \implies \frac{1}{1+\varepsilon} - \varepsilon \le t \int_0^\alpha f(x)^t dx \le \frac{1}{1-\varepsilon} + \varepsilon.$$

En outre,

$$0 \le t \int_{\alpha}^{1} f(x)^{t} dx \le t \left(\frac{1}{1+\alpha}\right)^{t} (1-\alpha) \underset{t \to +\infty}{\to 0},$$

donc il existe $T_1 > 0$ tel que

$$t \ge T_1 \implies 0 \le t \int_{\alpha}^{1} f(x)^t dx \le \varepsilon.$$

Ainsi

$$t \ge \max(T_0, T_1) \implies \frac{1}{1+\varepsilon} - \varepsilon \le t\Phi(t) \le \frac{1}{1-\varepsilon} + 2\varepsilon.$$

Enfin, $\lim_{\varepsilon \to 0^+} \frac{1}{1+\varepsilon} - \varepsilon = \lim_{\varepsilon \to 0^+} \frac{1}{1-\varepsilon} + 2\varepsilon = 1$, donc pour tout réel $\varepsilon' > 0$, il existe $\varepsilon_0 > 0$ tel que

$$0 < \varepsilon < \varepsilon_0 \implies \left(1 - \varepsilon' \le \frac{1}{1 + \varepsilon} - \varepsilon \quad \text{et} \quad \frac{1}{1 - \varepsilon} + 2\varepsilon \le 1 + \varepsilon'\right).$$

On a donc prouvé que pour tout réel $\varepsilon' > 0$, il existe $T_2 > 0$ tel que

$$t \ge T_2 \implies 1 - \varepsilon' \le t\Phi(t) \le 1 + \varepsilon',$$

et donc $t\Phi(t) \underset{t \to +\infty}{\to} 1$, c'est-à-dire $\Phi(t) \underset{t \to +\infty}{\sim} \frac{1}{t}$.

2. On procède de même à partir du DL :

$$f(x) = 1 + kx + o(x)_{x \to 0^+}.$$

Etant donné un réel $\varepsilon > 0$, il existe un réel $0 < \alpha < a$ tel que

$$x \in [0, \alpha] \implies \int_0^{\alpha} (1 + (k - \varepsilon)x)^n dx \le \int_0^{\alpha} f(x)^n dx \le \int_0^{\alpha} (1 + (k + \varepsilon)x)^n dx,$$

c'est-à-dire

$$x \in [0, \alpha] \implies \frac{-1 + (1 + (k - \varepsilon)\alpha)^{n+1}}{(k - \varepsilon)(n+1)} \le \int_0^{\alpha} f(x)^n dx \le \frac{-1 + (1 + (k + \varepsilon)\alpha)^{n+1}}{(k + \varepsilon)(n+1)}.$$

Puisque k < 0, on a $0 \le 1 + (k - \varepsilon)\alpha \le 1 + (k + \varepsilon)\alpha < 1$ quitte à diminuer α , et donc

$$\frac{-1 + (1 + (k - \varepsilon)\alpha)^{n+1}}{(k - \varepsilon)(n+1)} \underset{n \to +\infty}{\sim} \frac{-1}{(k - \varepsilon)n},$$

$$\frac{-1+(1+(k+\varepsilon)\alpha)^{n+1}}{(k+\varepsilon)(n+1)} \underset{n \to +\infty}{\sim} \frac{-1}{(k+\varepsilon)n}.$$

Ainsi, il existe $n_0 \in \mathbb{N}^*$ tel que

$$n \ge n_0 \implies -\frac{1}{k-\varepsilon} - \varepsilon \le n \int_0^\alpha f(x)^n dx \le -\frac{1}{k+\varepsilon} + \varepsilon.$$

En outre,

$$\left| \int_{\alpha}^{a} f(x)^{n} dx \right| \leq \|f\|_{\infty, [\alpha, a]}^{n} (a - \alpha),$$

avec $||f||_{\infty,[\alpha,a]} < 1$ (par hypothèse sur f, car ce sup est atteint en un point de $[\alpha,a] \subset]0,a]$ par continuité de f sur le segment $[\alpha,a]$), donc il existe $n_1 \in \mathbb{N}^*$ tel que

$$n \ge n_1 \implies \left| n \int_{\alpha}^{a} f(x)^n dx \right| \le \varepsilon.$$

Donc en sommant les deux intégrales :

$$n \ge \max(n_0, n_1) \implies -\frac{1}{k - \varepsilon} - 2\varepsilon \le nI_n \le -\frac{1}{k + \varepsilon} + 2\varepsilon,$$

et on conclut de la même façon qu'à la question précédente que :

$$\lim_{n \to +\infty} nI_n = -\frac{1}{k},$$

c'est-à-dire $I_n \sim_{n \to +\infty} \frac{-1}{f'(0)n}$.