MP/MPI concours blanc sujet niveau Mines

CALCULATRICE AUTORISEE

Notations

Dans tout le problème, n désigne un entier naturel non nul.

On note:

- $-\mathcal{M}_n(\mathbb{R})$ l'espace vectoriel des matrices carrées de taille n à coefficients réels;
- $\mathrm{GL}_n(\mathbb{R})$ le groupe des matrices inversibles de $\mathcal{M}_n(\mathbb{R})$;
- O(n) le groupe orthogonal d'ordre n;
- $-\mathcal{S}_n^+(\mathbb{R})$, respectivement $\mathcal{S}_n^{++}(\mathbb{R})$, l'ensemble des matrices symétriques de $\mathcal{M}_n(\mathbb{R})$ dont les valeurs propres sont positives ou nulles, respectivement strictement positives ;
- I_n la matrice identité de $\mathcal{M}_n(\mathbb{R})$;
- 0_n la matrice nulle de $\mathcal{M}_n(\mathbb{R})$.

Pour toute matrice M de $\mathcal{M}_n(\mathbb{R})$, on note tM sa matrice transposée, $\operatorname{Tr}(M)$ sa trace, et, pour $(i,j) \in \{1,\ldots,n\}^2$, m_{ij} le coefficient qui se trouve à l'intersection de la i-ème ligne et de la j-ème colonne. On munit $\mathcal{M}_n(\mathbb{R})$ de la norme définie, pour tout $M \in \mathcal{M}_n(\mathbb{R})$, par $||M|| = \sup(|m_{ij}|, (i,j) \in \{1,\ldots,n\}^2)$.

I Décomposition polaire d'un endomorphisme de \mathbb{R}^n

- I.A On munit \mathbb{R}^n de sa structure euclidienne canonique.
- **I.A.1)** Soit u un endomorphisme de \mathbb{R}^n . Montrer que u est autoadjoint défini positif si et seulement si sa matrice dans n'importe quelle base orthonormée appartient à $\mathcal{S}_n^{++}(\mathbb{R})$.
- **I.A.2)** Montrer que si $S \in \mathcal{S}_n^{++}(\mathbb{R})$, alors S est inversible et $S^{-1} \in \mathcal{S}_n^{++}(\mathbb{R})$.
- I.B Dans cette question, u désigne un endomorphisme de \mathbb{R}^n autoadjoint défini positif. On se propose de démontrer qu'il existe un unique endomorphisme v de \mathbb{R}^n autoadjoint, défini positif, tel que $v^2 = u$.
- **I.B.1)** Soit v un endomorphisme de \mathbb{R}^n , autoadjoint défini positif et vérifiant $v^2 = u$, et soit λ une valeur propre de u. Montrer que v induit un endomorphisme de $\mathrm{Ker}(u \lambda \mathrm{Id})$ que l'on déterminera.
- **I.B.2**) En déduire v, puis conclure.
- **I.B.3**) Montrer qu'il existe un polynôme Q à coefficients réels tel que v = Q(u).
- I.C Soit $A \in GL_n(\mathbb{R})$.
- **I.C.1)** Montrer que ${}^{t}AA \in \mathcal{S}_{n}^{++}(\mathbb{R})$.
- **I.C.2)** En déduire qu'il existe un unique couple $(O, S) \in O(n) \times \mathcal{S}_n^{++}(\mathbb{R})$ tel que A = OS.
- **I.C.3)** Déterminer les matrices O et S lorsque $A = \begin{pmatrix} 3 & 0 & -1 \\ \sqrt{2}/2 & 3\sqrt{2} & -3\sqrt{2}/2 \\ -\sqrt{2}/2 & 3\sqrt{2} & 3\sqrt{2}/2 \end{pmatrix}$.

I.D -

- **I.D.1)** Montrer que O(n) est une partie compacte de $\mathcal{M}_n(\mathbb{R})$.
- **I.D.2)** Montrer que $\mathcal{S}_n^+(\mathbb{R})$ est un fermé de $\mathcal{M}_n(\mathbb{R})$.
- **I.D.3)** Montrer que $GL_n(\mathbb{R})$ est une partie dense de $\mathcal{M}_n(\mathbb{R})$.
- **I.D.4)** Soit $A \in \mathcal{M}_n(\mathbb{R})$. Montrer qu'il existe un couple $(O, S) \in O(n) \times \mathcal{S}_n^+(\mathbb{R})$ tel que A = OS. Un tel couple est-il unique?
- *I.E* − Soit φ l'application de O(n)× $S_n^{++}(\mathbb{R})$ dans GL_n(ℝ) définie par $\varphi(O,S) = OS$ pour tout couple (O,S) de O(n) × $S_n^{++}(\mathbb{R})$.

Montrer que φ est bijective, continue et que sa réciproque est continue.

II Deux applications

II.A - Première application

Dans cette partie, A et B désignent deux matrices de $\mathcal{M}_n(\mathbb{R})$. On suppose qu'il existe une matrice U carrée de taille n, inversible, à coefficients complexes, telle que $U^{t}\overline{U} = I_n$ et $A = UBU^{-1}$, où \overline{U} désigne la matrice dont les coefficients sont les conjugués de ceux de U.

- **II.A.1)** Justifier que ${}^tA = U({}^tB)U^{-1}$.
- **II.A.2)** On se propose de montrer qu'il existe une matrice $P \in GL_n(\mathbb{R})$ telle que $A = PBP^{-1}$ et ${}^tA = P {}^tBP^{-1}$. Pour cela, on note X et Y les matrices de $\mathcal{M}_n(\mathbb{R})$ telles que U = X + iY.
- a) Montrer qu'il existe $\mu \in \mathbb{R}$ tel que $X + \mu Y \in GL_n(\mathbb{R})$.
- b) Montrer que AX = XB et AY = YB.
- c) Conclure.
- **II.A.3**) On écrit P sous la forme P = OS, avec $O \in O(n)$ et $S \in \mathcal{S}_n^{++}(\mathbb{R})$.
- a) Montrer que $BS^2 = S^2B$, puis que BS = SB.
- b) En déduire qu'il existe $O \in O(n)$ tel que $A = OB^tO$.

II.B - Seconde application

Soit $A \in \mathcal{M}_n(\mathbb{R})$. On se propose de donner une condition nécessaire et suffisante d'existence d'une solution $X \in GL_n(\mathbb{R})$ au système

$$(*): \begin{cases} {}^{t}AA + {}^{t}XX = I_n \\ {}^{t}AX - {}^{t}XA = 0_n \end{cases}$$

- II.B.1) Montrer que si le système (*) admet une solution dans $GL_n(\mathbb{R})$, alors les valeurs propres de tAA appartiennent à l'intervalle [0,1[.
- II.B.2) On suppose dans cette question que les valeurs propres de ${}^{t}AA$ appartiennent à l'intervalle [0,1[.
- a) Justifier que l'on peut chercher les solutions X de (*) sous la forme X = UH, avec $U \in O(n)$ et $H \in \mathcal{S}_n^{++}(\mathbb{R})$.
- b) Déterminer H.
- c) Montrer l'existence d'une solution $X \in \mathrm{GL}_n(\mathbb{R})$ de (*) appartenant à $\mathrm{GL}_n(\mathbb{R})$.

III Valeurs propres d'une matrice

Pour $p \in \mathbb{N}^*$, on pose

$$A_p = \left(egin{array}{ccccc} 2 & -1 & 0 & \cdots & 0 \ -1 & 2 & -1 & \ddots & dots \ 0 & -1 & 2 & \ddots & 0 \ dots & \ddots & \ddots & \ddots & -1 \ 0 & \cdots & 0 & -1 & 2 \end{array}
ight) \in \mathcal{M}_p(\mathbb{R})$$

On note P_p le polynôme tel que, pour tout réel x, $P_p(x) = \det(xI_p - A_p)$.

- III.A Montrer qu'à $x \in \mathbb{R}$ fixé, la suite $(P_p(x))_{p \in \mathbb{N}^*}$ vérifie une relation linéaire d'ordre 2, que l'on précisera.
- III.B Soit $x \in \mathbb{R}$ tel que |2-x| < 2. Après avoir justifié l'existence d'un unique $\theta \in]0, \pi[$ tel que $2-x = 2\cos\theta$, déterminer $P_p(x)$ en fonction de $\sin((p+1)\theta)$ et de $\sin(\theta)$.
- III.C Déterminer les valeurs propres de A_p .
- III.D Montrer que A_p est diagonalisable, et en déterminer une base de vecteurs propres, en précisant pour chacun la valeur propre associée.

Soit f une forme linéaire sur $\mathcal{M}_n(\mathbb{R})$.

IV.A – Montrer qu'il existe une unique matrice $A \in \mathcal{M}_n(\mathbb{R})$ telle que $\forall M \in \mathcal{M}_n(\mathbb{R}), f(M) = \text{Tr}(AM)$. Dans la suite, A désigne la matrice définie dans cette question IV.A.

IV.B -

IV.B.1) Justifier l'existence de $M_n = \sup(\{f(O), O \in O(n)\})$.

IV.B.2) Justifier que ${}^t\!AA$ admet n valeurs propres positives $\mu_1,\ldots,\mu_n,$ comptées avec multiplicités.

IV.B.3) Montrer que $M_n = \sup(\{\operatorname{Tr}(D\Omega), \Omega \in \operatorname{O}(n)\})$, où D est la matrice diagonale, dont les éléments diagonaux sont $\sqrt{\mu_1}, \ldots, \sqrt{\mu_n}$.

IV.B.4) En déduire que $M_n = \sum_{k=1}^n \sqrt{\mu_k}$.

IV.C – Dans cette question, f désigne la forme linéaire définie par $\forall M \in \mathcal{M}_n(\mathbb{R}), f(M) = \sum_{j=1}^n \sum_{i=j}^n m_{i,j}$.

IV.C.1) Déterminer la matrice A telle que $\forall M \in \mathcal{M}_n(\mathbb{R}), f(M) = Tr(AM)$.

IV.C.2) Montrer que

$$A^{-1} = \begin{pmatrix} 1 & -1 & 0 & \cdots & 0 \\ 0 & 1 & -1 & \ddots & \vdots \\ \vdots & \ddots & 1 & \ddots & 0 \\ \vdots & & \ddots & \ddots & -1 \\ 0 & \cdots & \cdots & 0 & 1 \end{pmatrix}$$

IV.C.3) Déterminer les valeurs propres de $A^{-1} tA^{-1}$.

IV.C.4) Montrer que
$$M_n = \sum_{k=1}^{n} \frac{1}{2\cos\frac{k\pi}{2n+1}}$$
.

IV.C.5) Donner un équivalent de M_n lorsque n tend vers $+\infty$.

