Corrigé du DS03 du 30/11/2024 (4h) Sujet B (MPI)

* * *

Exercice 1 : Questions de topologie (comportant l'exercice 1 de la banque INP)

1. On obtient facilement par croissance de l'intégrale que

$$\forall f \in E, \qquad \|f\|_1 \le \int_0^1 \|f\|_{\infty} = \|f\|_{\infty},$$

mais il n'existe pas de constante $C \geq 0$ telle que

$$\forall f \in E, \qquad ||f||_{\infty} \le C||f||_1.$$

En effet, si c'était le cas, on aurait en particulier pour $f = (t \mapsto t^n)$:

$$\forall n \in \mathbb{N}, \qquad 1 \le C \int_0^1 t^n = \frac{C}{n+1},$$

ce qui est impossible puisque $\frac{C}{n+1} \underset{n \to +\infty}{\longrightarrow} 0$.

Ainsi, les normes $\|\ \|_{\infty}$ et $\|\ \|_1$ ne sont pas équivalentes

- 2. (a) L'application $u: \begin{cases} E \longrightarrow \mathbb{R} \\ f \longmapsto f(0) \end{cases}$ est linéaire (puisque $u(\lambda f + g) = \lambda f(0) + g(0) = \lambda u(f) + u(g)$ pour tout $(\lambda, f, g) \in \mathbb{R} \times E \times E$). De plus, $\forall f \in E, |u(f)| = |f(0)| \le ||f||_{\infty} \text{ donc } \boxed{u \text{ est continue}} \text{ et } ||u|| = \sup_{f \ne 0} \frac{|u(f)|}{||f||_{\infty}} \le 1$. Si on choisit f constante égale à 1, on a $f \in E \setminus \{0_E\}$ et $|u(f)| = 1 = ||f||_{\infty} \text{ donc } \boxed{||u|| = 1}$ (et le sup est atteint).
 - (b) On a $F = u^{-1}(\{0\})$. Puisque u est continue et que $\{0\}$ est un fermé de $(\mathbb{R}, | |)$, on en déduit que F est un fermé de $(E, || ||_{\infty})$.
- 3. (a) Soit $n \in \mathbb{N}^*$. On a

$$||f_n - c||_1 = \int_0^1 |f_n - 1| = \int_0^{1/n} (1 - nx) dx = \frac{1}{2n}.$$

- (b) Chaque f_n est dans F (puisque f_n est continue et $f_n(0) = 0$) et $||f_n c||_1 \underset{n \to +\infty}{\longrightarrow} 0$ donc la fonction c est limite d'une suite (f_n) d'éléments de F dans l'evn $(E, || \cdot ||_1)$.

 Ainsi, $c \in \overline{F}$ (par caractérisation séquentielle de l'adhérence), et F n'est pas fermé dans $(E, || \cdot ||_1)$ puisque les f_n sont dans F mais pas leur limite c (vu que $c(0) = 1 \neq 0$).
- (c) L'application $u: \begin{cases} E \longrightarrow \mathbb{R} \\ f \longmapsto f(0) \end{cases}$ n'est pas continue pour la norme $\| \|_1$ car $\{0\}$ est un fermé de $(\mathbb{R}, | \|)$ alors que $u^{-1}(\{0\}) = F$ n'est pas un fermé de $(E, \| \|_1)$.

* * *

Exercice 2 : Questions sur les espaces préhilbertiens (comportant l'exercice 77 de la banque INP)

- 1. Pour montrer que $A^{\perp} = A$, voir le cours. L'inclusion $A \subset (A^{\perp})^{\perp}$ est triviale (par définition de l'orthogonalité). Pour l'autre inclusion, on peut soit utiliser l'égalité des dimensions (valable seulement si E est de dimension finie), ou alors utiliser le fait que $E = A \oplus A^{\perp}$ dès que A est de dimension finie (même si E ne l'est pas), mais c'est un peu plus compliqué dans ce cas.
- 2. (a) On a $F \subset F + G$ et $G \subset F + G$ donc $(F + G)^{\perp} \subset F^{\perp}$ et $(F + G)^{\perp} \subset G^{\perp}$. Ceci montre que $(F + G)^{\perp} \subset F^{\perp} \cap G^{\perp}$.

Réciproquement, si $x \in F^{\perp} \cap G^{\perp}$, alors x est orthogonal à tout $f \in F$ et tout $g \in G$, donc par bilinéarité du produit scalaire, (x|f+g)=0 pour tout $(f,g)\in F\times G$, ce qui montre que $x\in (F+G)^{\perp}$.

Finalement, $(F+G)^{\perp} = F^{\perp} \cap G^{\perp}$

(b) On applique la question précédente avec les SEV F^{\perp} et G^{\perp} à la place de F et G:

$$(F^{\perp} + G^{\perp})^{\perp} = (F^{\perp})^{\perp} \cap (G^{\perp})^{\perp}.$$

Puisque $(A^{\perp})^{\perp} = A$ pour tout SEV A de E (d'après la question 1.), on en déduit que

$$(F^{\perp} + G^{\perp})^{\perp} = F \cap G,$$

donc en reprenant l'orthogonal:

$$F^{\perp} + G^{\perp} = (F \cap G)^{\perp}$$

3. Notons $s: \mathbb{R}^2 \to \mathbb{R}^2$ la réflexion d'axe F: y = 3x. Puisque $s \in \mathcal{O}^-(\mathbb{R}^2)$ et la base canonique (e_1, e_2) est orthonormée, on en déduit que $S = Mat_{(e_1, e_2)}(s)$ est dans $\mathcal{O}_2^-(\mathbb{R})$, donc de la forme

$$S = \begin{pmatrix} a & b \\ b & -a \end{pmatrix}, \qquad a^2 + b^2 = 1.$$

De plus $u = (1,3) \in F$ donc s(u) = u, ce qui donne les équations

$$S\left(\begin{array}{c}1\\3\end{array}\right)=\left(\begin{array}{c}1\\3\end{array}\right)\iff \left\{\begin{array}{ccc}a+3b&=1\\-3a+b&=3\end{array}\iff \left\{\begin{array}{ccc}a=&-4/5\\b=&3/5\end{array}\right.$$

Finalement, $S = \frac{1}{5} \begin{pmatrix} -4 & 3 \\ 3 & 4 \end{pmatrix}$

4. Notons (e_1, e_2, e_3) la base canonique de \mathbb{R}^3 et p_F la projection orthogonale sur la droite F = Vect(1,1,1). Le vecteur $e = \frac{1}{\sqrt{3}}(1,1,1)$ forme une base orthonormée de F, donc on dispose de la formule

$$\forall u = (x, y, z) \in \mathbb{R}^3, \qquad p_F(u) = (u|e)e = \frac{1}{3}(x + y + z) \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} x + y + z \\ x + y + z \\ x + y + z \end{pmatrix}.$$

On obtient donc
$$Mat_{(e_1,e_2,e_3)}(p_F) = \frac{1}{3} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$
.

* * *

Exercice 3 : Etude de deux suites récurrentes Extrait du sujet E3A MP 2013 Math A

1. On a $u_0 > 0$ et $u_1 > 0$ par hypothèse.

Pour $n \geq 2$, si on suppose u_0, \dots, u_{n-1} bien définis et strictement positifs, alors le terme $u_n = \frac{2}{u_{n-1} + u_{n-2}}$ est bien défini et strictement positif. Par récurrence forte, on obtient que $(u_n)_{n\in\mathbb{N}}$ est bien définie et à valeurs dans $]0,+\infty[$. Idem pour (v_n)

2. Si (v_n) converge vers ℓ , alors $\ell \in \mathbb{R}^+ \cup \{+\infty\}$ (puisque $v_n > 0$ pour tout $n \in \mathbb{N}$). Vu que (v_{n+1}) et (v_{n+2}) convergent aussi vers ℓ et que

$$\forall n \in \mathbb{N}, \quad v_{n+2}\sqrt{v_{n+1}v_n} = 1,$$

on obtient par produit et composition de limites :

$$\ell\sqrt{\ell^2} = 1,$$

donc la seule limite possible de (v_n) est $\ell = 1$ (puisque $\ell \ge 0$ et $\ell = +\infty$ est impossible).

3. (a) En passant au logarithme dans la relation

$$\forall n \in \mathbb{N}, \quad v_{n+2}\sqrt{v_{n+1}v_n} = 1,$$

on obtient

$$\forall n \in \mathbb{N}, \quad \ln(v_{n+2}) + \frac{1}{2}\ln(v_{n+1}) + \frac{1}{2}\ln(v_n) = 0,$$

c'est-à-dire

$$\forall n \in \mathbb{N}, \qquad 2w_{n+2} + w_{n+1} + w_n = 0$$

(b) D'après le cours de première année, il suffit de résoudre l'équation caractéristique $2r^2 + r + 1 = 0$ pour déterminer une base de l'espace vectoriel

$$F = \{ w \in \mathbb{C}^{\mathbb{N}}, \ \forall n \in \mathbb{N}, \ 2w_{n+2} + w_{n+1} + w_n = 0 \}.$$

Puisque $2r^2 + r + 1 = 0 \iff r = \frac{-1 \pm i\sqrt{7}}{4}$, on obtient que les deux suites $\left(\left(\frac{-1 - i\sqrt{7}}{4}\right)^n, \left(\frac{-1 + i\sqrt{7}}{4}\right)^n\right)$ forment une base de F

(c) Toute suite (x_n) de F converge vers 0 puisque ces suites sont de la forme

$$x_n = \alpha \lambda^n + \beta \overline{\lambda}^n,$$

où α et β sont deux constantes complexes et $\lambda = \frac{-1+i\sqrt{7}}{4}$ est de module $\frac{\sqrt{2}}{2} < 1$.

4. La suite (w_n) est dans F donc d'après la question précédente, on a $w_n \to 0$, donc par continuité de l'exponentielle, $v_n = e^{w_n} \to 1$, ce qui montre que la série $\sum v_n$ diverge grossièrement. De plus, $v_n - 1 = e^{w_n} - 1 = w_n + o(w_n) \sim w_n$ et $\sum w_n$ converge absolument puisque $|w_n| = |\alpha \lambda^n + \beta \overline{\lambda}^n| = O(|\lambda|^n) \text{ avec } |\lambda| < 1.$

Donc par comparaison de séries à termes positifs, $\sum (v_n - 1)$ converge absolument, donc converge

5. (a) La suite (x_n) ne converge pas vers λ , donc on a

$$non (\forall r > 0, \exists N \in \mathbb{N}, \forall n \ge N, |x_n - \lambda| \le r),$$

c'est-à-dire

$$\exists r > 0, \ \forall N \in \mathbb{N}, \ \exists n \ge N, \ |x_n - \lambda| > r$$

Cela permet de construire par récurrence une suite extraite $(x_{\varphi(n)})$ telle que $\forall n \in \mathbb{N}, |x_{\varphi(n)} - \lambda| > r$. Cette suite extraite étant bornée (car (x_n) l'est), elle admet elle-même une suite extraite $x_{\varphi(\psi(n))}$ convergente vers un réel λ' , qui est différent de λ car $\forall n \in \mathbb{N}, |x_{\varphi(\psi(n))} - \lambda| > r \text{ donc en passant à la limite}, |\lambda' - \lambda| \ge r > 0.$

Ainsi, la suite (x_n) possède une valeur d'adhérence $\lambda' \neq \lambda$

- (b) Si (x_n) est bornée et possède une seule valeur d'adhérence, alors la divergence de (x_n) impliquerait l'existence d'au moins deux valeurs d'adhérence d'après la question précédente, ce qui est contradictoire. Donc (x_n) est convergente.
- (c) Si (x_n) converge vers $\ell \in \mathbb{R}$, alors toute suite extraite de (x_n) converge aussi vers ℓ , donc ℓ est la seule valeur d'adhérence de (x_n) , ce qui implique que $\ell_- = \ell_+ = \ell$. Réciproquement : si $\ell_- = \ell_+$, alors (x_n) possède une seule valeur d'adhérence, et elle est bornée par hypothèse, donc convergente d'après la question précédente.

On conclut que pour toute suite (x_n) bornée, (x_n) converge ssi $\ell_- = \ell_+$

- 6. (a) Montrons par récurrence forte que $\forall n \in \mathbb{N}, \ \alpha \leq u_n \leq \frac{1}{\alpha}$.
 - C'est vrai pour n=0 car $\alpha=\min\{u_0,u_1,\frac{1}{u_0},\frac{1}{u_1}\}$ vérifie notamment $\alpha\leq u_0$ et $\alpha\leq\frac{1}{u_0}$.
 - C'est vrai pour n = 1 car $\alpha \le u_1$ et $\alpha \le \frac{1}{u_1}$.
 - Soit $n \ge 2$. Si $\alpha \le u_k \le \frac{1}{\alpha}$ pour tout k < n, alors $2\alpha \le u_{n-1} + u_{n-2} \le \frac{2}{\alpha}$ donc

$$u_n = \frac{2}{u_{n-1} + u_{n-2}} \in [\alpha, \frac{1}{\alpha}].$$

(b) Le réel ℓ_- est une valeur d'adhérence de (u_n) dont il existe une suite extraite $(u_{\psi(n)})$ qui converge vers ℓ_- . En posant $\gamma(n) = \psi(n+2) - 2$, on a bien $\gamma: \mathbb{N} \to \mathbb{N}$ strictement croissante (puisque $\psi: \mathbb{N} \to \mathbb{N}$ est strictement croissante et $\forall n \in \mathbb{N}, \psi(n+2) \geq n+2 \geq 2$) et $u_{\gamma(n)+2} = u_{\psi(n+2)} \to \ell_-$.

Par ailleurs, la suite $(u_{\gamma(n)})$ est bornée donc possède une suite extraite $(u_{\gamma(\varphi_1(n))})$ qui converge vers un réel λ_1 .

De même, la suite $(u_{\gamma(\varphi_1(n))+1})$ est bornée donc possède une suite extraite $(u_{\gamma(\varphi_1(\varphi_2(n)))+1})$ qui converge vers λ_2 .

Il ne reste plus qu'à poser $\varphi = \gamma \circ \varphi_1 \circ \varphi_2$ pour obtenir le résultat : on a bien $\varphi : \mathbb{N} \to \mathbb{N}$ strictement croissante et

$$u_{\varphi(n)} = u_{\gamma(\varphi_1(\varphi_2(n)))} \to \lambda_1,$$

$$u_{\varphi(n)+1} = u_{\gamma(\varphi_1(\varphi_2(n)))+1} \to \lambda_2$$

$$u_{\varphi(n)+2} = u_{\gamma(\varphi_1(\varphi_2(n)))+2} \to \ell_-$$

(on a reproduit ici la technique d'extraction commune vue en cours pour démontrer qu'un produit fini de compacts est compact).

On a en outre $\forall n \in \mathbb{N}$, $(u_{\varphi(n)} + u_{\varphi(n)+1})u_{\varphi(n)+2} = 2$ donc en passant à la limite, on obtient $(\lambda_1 + \lambda_2)\ell_- = 2$. Enfin, λ_1 et λ_2 étant des valeurs d'adhérence, elles sont inférieures à ℓ_+ , donc puisque $\ell_- \geq \alpha > 0$, on obtient l'inégalité $2 \leq 2\ell_+\ell_-$, soit $\ell_-\ell_+ \geq 1$.

(c) On peut de même obtenir une suite extraite $u_{\varphi'(n)}$ telle que

$$u_{\varphi'(n)} \to \lambda'_1, \quad u_{\varphi'(n)+1} \to \lambda'_2, \quad u_{\varphi'(n)+2} \to \ell_+,$$

et dans ce cas, on obtient après passage à la limite dans la relation précédente :

$$(\lambda_1' + \lambda_2')\ell_+ = 2,$$

et donc puisque $\lambda_1', \lambda_2' \ge \ell_-$ et $\ell_+ > 0$, on déduit $2 \ge 2\ell_-\ell_+$, soit $\ell_-\ell_+ \le 1$. On a finalement montré $\ell_-\ell_+ = 1$.

(d) De même que précédemment, on peut construire une suite extraite $(u_{\varphi(n)})$ telle que

$$u_{\varphi(n)} \to \lambda_1, \quad u_{\varphi(n)+1} \to \lambda_2, \quad u_{\varphi(n)+2} \to \lambda_3, \quad u_{\varphi(n)+3} \to \ell_-.$$

En passant à la limite dans les relations :

$$\forall n \in \mathbb{N}, \quad (u_{\varphi(n)} + u_{\varphi(n)+1})u_{\varphi(n)+2} = 2, \quad (u_{\varphi(n)+1} + u_{\varphi(n)+2})u_{\varphi(n)+3} = 2,$$

on obtient

$$(\lambda_1 + \lambda_2)\lambda_3 = 2 = (\lambda_2 + \lambda_3)\ell_-,$$

avec $0 < \alpha \le \ell^- \le \lambda_1, \lambda_2, \lambda_3 \le \ell_+$ et $\ell_+ = \frac{1}{\ell_-}$, donc

$$\lambda_2 + \lambda_3 = \frac{2}{\ell} = 2\ell_+,$$

ce qui entraı̂ne $\lambda_2 = \lambda_3 = \ell_+$ (puisque tous deux inférieurs ou égaux à ℓ_+). Ensuite,

$$\lambda_1 + \lambda_2 = \frac{2}{\lambda_3} = \frac{2}{\ell_+} = 2\ell_-,$$

donc $\lambda_1 = \lambda_2 = \ell_-$ (puisque tous deux supérieurs ou égaux à ℓ_-). Finalement, $\ell_+ = \lambda_2 = \ell_-$.

(e) La suite (u_n) est bornée et $\ell_- = \ell_+$ donc d'après 5.(c), (u_n) converge vers $\ell = \ell_- = \ell_+$. De plus, d'après les relations précédemment obtenues, $\ell^2 = 1$ et $\ell > 0$ donc $\ell = 1$.

Exercice 4: Etude de normes matricielles Extrait du sujet E3A MP 2013 Math A

1. Pour A, B dans $\mathcal{M}_n(\mathbb{C})$ et X, Y dans \mathbb{C}^n , on a :

$$||BX||_{\infty} \le ||B||_{\infty} ||X||_{\infty}, \qquad ||AY||_{\infty} \le ||A||_{\infty} ||Y||_{\infty},$$

donc avec Y = BX:

$$\|(AB)X\|_{\infty} = \|A(BX)\|_{\infty} \le \|A\|_{\infty} \|BX\|_{\infty} \le \|A\|_{\infty} \|B\|_{\infty} \|X\|_{\infty},$$

ce qui prouve que
$$\boxed{ \|\!\!|\!| AB \|\!\!|\!|_\infty = \sup_{X \neq 0} \frac{\|(AB)X\|_\infty}{\|X\|_\infty} \leq \|\!\!|\!| A \|\!\!|\!|\!|\!| B \|\!\!|\!|\!|_\infty}$$

- ce qui prouve que $\|AB\|_{\infty} = \sup_{X \neq 0} \frac{\|(AB)X\|_{\infty}}{\|X\|_{\infty}} \leq \|A\|_{\infty} \|B\|_{\infty}.$ 2. (a) On a $DZ = \begin{pmatrix} m_{1,1}z_1 \\ m_{2,2}z_2 \\ \vdots \\ m_{n,n}z_n \end{pmatrix}$ donc $\|DZ\|_{\infty} = \max_{1 \leq i \leq n} |m_{i,i}z_i| \leq m \max_{1 \leq i \leq n} |z_i| = m \|Z\|_{\infty}.$
 - (b) Si $||Z||_{\infty} \le 1$, alors on a $||DZ||_{\infty} \le m$ d'où $|||D|||_{\infty} = \sup_{X \in \mathbb{C}^n, ||X||_{\infty} \le 1} ||DX||_{\infty} \le m$.

De plus, il existe un entier $j \in \{1, \cdots, n\}$ tel que $m = |m_{j,j}|$. En prenant $z_j = 1$ et pour

$$k\neq j,\, z_k=0 \text{ et } Z=\left(\begin{array}{c} z_1\\ z_2\\ \vdots\\ z_n \end{array}\right),\, \text{on a } \|DZ\|_\infty=m \text{ et } \|Z\|_\infty=1 \text{ d'où } |||D|||_\infty\geq m.$$

- 3. (a) $N_P(X) = ||PX||_{\infty}$.
 - Si P n'est pas inversible, en prenant $X \in \ker P$ non nul, on a $N_P(X) = 0$ et $X \neq 0$ donc N_P n'est pas une norme.

Si P est inversible, alors

- N_P est une application de \mathbb{C}^n dans \mathbb{R}^+
- $N_P(X) + N_P(Y)$.

— $\forall X \in \mathbb{C}^n$, $N_P(X) = 0 \Rightarrow ||PX||_{\infty} = 0 \Rightarrow PX = 0 \Rightarrow X = 0$ (car $||.||_{\infty}$ est une norme et P est inversible).

donc N_P est une norme.

Finalement, N_P est une norme si et seulement si P est une matrice inversible

(b) Par définition:

$$|||A|||_P = \sup_{X \in \mathbb{C}^n, ||X||_P \le 1} ||AX||_P = \sup_{X \in \mathbb{C}^n, ||PX||_\infty \le 1} ||PAX||_\infty = \sup_{X \in \mathbb{C}^n, ||PX||_\infty \le 1} ||PAP^{-1}(PX)||_\infty.$$

Or P est inversible, donc $X \mapsto PX$ est une bijection de \mathbb{C}^n sur \mathbb{C}^n donc

$$\sup_{X \in \mathbb{C}^n, \|PX\|_{\infty} \le 1} \|PAP^{-1}(PX)\|_{\infty} = \sup_{Y \in \mathbb{C}^n, \|Y\|_{\infty} \le 1} \|PAP^{-1}Y\|_{\infty} = \|PAP^{-1}\|_{\infty},$$

On a donc bien $|||A|||_P = |||PAP^{-1}|||_{\infty}$

- 4. (a) Soit $P \in GL_n(\mathbb{C})$. Etant semblables, les matrices A et PAP^{-1} ont le même spectre et donc $\rho(A) = \rho(PAP^{-1})$.
 - (b) On fixe $P \in GL_n(\mathbb{C})$. Soit $\lambda \in \operatorname{sp}(A)$ et $X \neq 0$ un vecteur propre associé. On a $AX = \lambda X$, donc en passant à la norme $\| \cdot \|_P$:

$$||AX||_P = ||\lambda X||_P = |\lambda|||X||_P,$$

et on déduit :

$$|\lambda| = \frac{\|AX\|_P}{\|X\|_P} \le \sup_{Y \neq 0} \frac{\|AY\|_P}{\|Y\|_P} = \|A\|_P.$$

Ceci étant valable pour toute valeur propre λ , on conclut $\rho(A) \leq ||A||_P$

(c) On suppose A diagonalisable. Il existe une matrice diagonale D et une matrice inversible P telles que $D = PAP^{-1}$.

Attention, il s'agit de la convention inverse de la convention habituelle, c'està-dire que l'on a échangé les rôles de P et P^{-1} (pour coller aux formules de l'énoncé)!

D'après 3.(b), $|||A|||_P = |||PAP^{-1}|||_{\infty} = |||D|||_{\infty}$, d'après 2.(b), $|||D|||_{\infty} = \rho(D)$ et comme A et D sont semblables, $\rho(D) = \rho(A)$.

Il existe donc $P \in GL_n(\mathbb{C})$ tel que $|||A|||_P = \rho(A)$

(d) Considérons $A = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$.

On trouve facilement $\chi_A(X) = X^3 - 1$, les valeurs propres de A sont 1, j et j^2 donc $\rho(A) = 1$.

Des vecteurs propres associés à 1, j et j^2 sont $\begin{pmatrix} 1\\1\\1 \end{pmatrix}$, $\begin{pmatrix} 1\\j^2\\j \end{pmatrix}$ et $\begin{pmatrix} 1\\j\\j^2 \end{pmatrix}$.

Si
$$P^{-1} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & j^2 & j \\ 1 & j & j^2 \end{pmatrix}$$
 et $D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & j & 0 \\ 0 & 0 & j^2 \end{pmatrix}$, alors $D = PAP^{-1}$ et d'après 4.(c) $|||A|||_P = \rho(A)$.

Attention, comme dit précédemment, la matrice P^{-1} s'obtient "comme la matrice de passage P habituelle", c'est la matrice qui exprime les vecteurs propres en fonction de la base canonique.

En aucun cas, on ne calcule un inverse de matrice! C'est pour quoi l'énoncé demande P^{-1} et pas P.

(e) Considérons
$$A = \begin{pmatrix} 1 & 2 & \cdots & n \\ 1 & 2 & \cdots & n \\ \vdots & \vdots & & \vdots \\ 1 & 2 & \cdots & n \end{pmatrix}$$
.

A est de rang 1 et E_0 a pour équation $x_1 + 2x_2 + \cdots + nx_n = 0$

Une base de
$$E_0$$
 est :
$$\begin{pmatrix} 2 \\ -1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \begin{pmatrix} 3 \\ 0 \\ -1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \cdots, \begin{pmatrix} n \\ 0 \\ \vdots \\ 0 \\ -1 \end{pmatrix},$$

D'autre part, $\begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$ est un vecteur propre de A associé à la valeur propre $\frac{n(n+1)}{2}$.

A est donc diagonalisable (la somme des dimensions des sous-espaces propres est n)

$$Si = \begin{pmatrix} 2 & 3 & \cdots & n & 1 \\ -1 & 0 & \cdots & 0 & 1 \\ 0 & -1 & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & 0 & \vdots \\ 0 & \ddots & 0 & -1 & 1 \end{pmatrix} et D = \begin{pmatrix} 0 & \cdots & \cdots & 0 & 0 \\ \vdots & \ddots & & \vdots & \vdots \\ \vdots & & \ddots & \vdots & \vdots \\ 0 & \cdots & \cdots & 0 & 0 \\ 0 & \cdots & \cdots & 0 & \frac{n(n+1)}{2} \end{pmatrix},$$

alors $D = PAP^{-1}$ et toujours d'après 4.(c) $|||A|||_P = \rho(A)$

5. (a) Soit
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 et $Z = \begin{pmatrix} z_1 \\ z_2 \end{pmatrix}$. On a

$$||AZ||_{\infty} = \left\| \left(\begin{array}{c} az_1 + bz_2 \\ cz_1 + dz_2 \end{array} \right) \right\|_{\infty} = \max(|az_1 + bz_2|, |cz_1 + dz_2|)$$

$$\leq \max(|az_1|+|bz_2|,|cz_1|+|dz_2|) \leq \max(|a|+|b|,|c|+|d|) \max(|z_1|,|z_2|) = m\|Z\|_{\infty}.$$

On a donc $||AZ||_{\infty} \le m||Z||_{\infty}$.

On en déduit $|||A|||_{\infty} \leq m$.

Si on suppose que m = |a| + |b|, alors on choisit z_1 et z_2 de module 1 tels que $|a| = az_1$ et $|b| = bz_2$ (toujours possible). On a alors

$$||AZ||_{\infty} = \max(|az_1 + bz_2|, |cz_1 + dz_2|) = \max(m, |cz_1 + dz_2|) = m, \qquad ||Z||_{\infty} = 1.$$

De même si m = |c| + |d|.

On en déduit $|||A|||_{\infty} \geq m$.

On a donc $||A||_{\infty} = m$

(b) i. $A \in \mathcal{M}_2(\mathbb{C})$, non diagonalisable.

On travaille dans \mathbb{C} , donc sp $(A) \neq \emptyset$.

Si sp(A) possèdait deux éléments, alors le polynôme caractéristique de A serait scindé à racines simples et A serait diagonalisable, donc sp(A) ne contient qu'un élément.

ii. On choisit une base $e = (e_1, e_2)$ de E, avec e_1 un vecteur propre de f associé à la valeur propre α .

La matrice dans la base e de f est alors triangulaire supérieure, avec les valeurs propres

sur la diagonale. Elle est donc de la forme $Mat_e(f) = \begin{pmatrix} \alpha & \beta \\ 0 & \alpha \end{pmatrix}$

iii. β est non nul car A n'est pas diagonalisable.

Posons
$$e'_1 = \frac{\beta}{\varepsilon} e_1$$
 et $e'_2 = e_2$.

$$e' = (e'_1, e'_2)$$
 est une base de \mathbb{C}^2 , $f(e'_1) = \alpha e'_1$, $f(e'_2) = f(e_2) = \beta e_1 + \alpha e_2 = \varepsilon e'_1 + \alpha e'_2$.

On a donc
$$Mat_{e'}(f) = \begin{pmatrix} \alpha & \varepsilon \\ 0 & \alpha \end{pmatrix}$$
.

Il existe donc une base e' de \mathbb{C}^2 telle que $Mat_{e'}(f) = \begin{pmatrix} \alpha & \beta' \\ 0 & \alpha \end{pmatrix}$ où $|\beta'| \leq \varepsilon$.

iv. Notons $T = \begin{pmatrix} \alpha & \beta' \\ 0 & \alpha \end{pmatrix}$. Il existe une matrice $P \in GL_2(\mathbb{C})$ telle que $T = PAP^{-1}$.

On a alors
$$|||A|||_P = |||PAP^{-1}|||_{\infty} = |||T|||_{\infty} = |\alpha| + |\beta'| \le |\alpha| + \varepsilon = \rho(A) + \varepsilon$$
.

Il existe donc une matrice $P \in GL_2(\mathbb{C})$ telle que $|||A|||_P \le \rho(A) + \varepsilon$

(c) D'après 4.(b), on a

$$\forall P \in GL_2(\mathbb{C}), \quad |||A|||_P \ge \rho(A),$$

donc $\rho(A)$ est un minorant de l'ensemble $\{|||A|||_P, P \in GL_2(\mathbb{C})\}.$

Si A est diagonalisable, alors ce minorant est atteint (cf. 4.(c)), c'est donc la borne inférieure du dit ensemble.

Si A n'est pas diagonalisable, alors d'après 5.(b) iv., on a pour tout réel $\varepsilon > 0$:

$$\exists P \in GL_2(\mathbb{C}) \quad |||A|||_P \le \rho(A) + \varepsilon/2 < \rho(A) + \varepsilon,$$

donc $\rho(A) + \varepsilon$ ne minore pas l'ensemble en question, ce qui est la caractérisation de la borne inférieure.

Finalement, on a dans to us les cas $\frac{\inf_{P \in GL_2(\mathbb{C})} |||A|||_P = \rho(A) }{}.$

(d) Considérons $A = \begin{pmatrix} -3 & 8 \\ -2 & 5 \end{pmatrix}$. On a

$$||A||_{\infty} = \max(|-3|+|8|,|-2|+|5|) = 11$$

On a $\chi_A(X) = (X-1)^2$ et $\dim(E_1(A)) = 1$ donc A est non diagonalisable et $\operatorname{sp}(A) = \{1\}$. On a donc $\rho(A) = 1$ et d'après 5.(b) iii., A est semblable à une matrice de la forme $T = \begin{pmatrix} 1 & \beta' \\ 0 & 1 \end{pmatrix}$ avec $|\beta'| \leq 1$. Il existe donc $P \in GL_2(\mathbb{C})$ telle que $T = PAP^{-1}$. D'où :

$$|||A|||_P = |||PAP^{-1}|||_{\infty} = |||T|||_{\infty} = 1 + |\beta'| \le 2.$$

Il existe donc une matrice $P \in GL_2(\mathbb{C})$ telle que $|||A|||_P \leq 2$

(e) Supposons $\rho(A) < 1$.

On utilise la question 5.(c) avec $\varepsilon = \frac{1 - \rho(A)}{2} > 0$. Par définition de l'inf, il existe une matrice $P \in GL_2(\mathbb{C})$ telle que

$$|||A|||_P \le \rho(A) + \varepsilon = \frac{1 + \rho(A)}{2} < 1$$

Or, on sait que la norme subordonnée $||| |||_P$ est sous-multiplicative, donc

$$|||A^n|||_P \le |||A|||_P^n \underset{n \to +\infty}{\longrightarrow} 0,$$

ce qui montre que la suite $(A^n)_{n\in\mathbb{N}}$ converge vers $0_{\mathcal{M}_2(\mathbb{C})}$.

Ici, on a donc du choisir "la bonne norme" pour pourvoir montrer la convergence vers 0. Bien sûr, la suite (A^n) converge vers 0 pour toute norme sur $\mathcal{M}_2(\mathbb{C})$, puisqu'elles sont équivalentes, mais la norme $|||\ |||_P$ précédemment choisie est la mieux adaptée pour faire le calcul.

* * *