DS03 du 04/10/2025 (4h) Sujet A (MPI*)

Le sujet se compose de 3 exercices indépendants. Calculatrice interdite.

* * *

Exercice 1 : Inégalité de Knopp

Q 1. Soit $f:[a,b]\to\mathbb{R}$ une fonction continue à valeurs dans un intervalle J. Soit $\varphi:J\to\mathbb{R}$ une fonction continue et convexe sur J. Démontrer que

$$\varphi\left(\frac{1}{b-a}\int_a^b f\right)\leqslant \frac{1}{b-a}\int_a^b \varphi\circ f.$$

On pourra utiliser des sommes de Riemann.

Dans la suite, $f: \mathbb{R}_+ \to \mathbb{R}$ désigne une fonction continue, strictement positive et intégrable. Pour tout x > 0, on pose

$$g(x) = \frac{1}{x} \int_0^x t f(t) dt$$
 et $h(x) = \frac{1}{x} g(x) = \frac{1}{x^2} \int_0^x t f(t) dt$.

- **Q 2.** Déterminer la limite de g(x) lorsque x tend vers 0.
- **Q 3.** Déterminer la limite de g(x) lorsque x tend vers $+\infty$.

 On pourra utiliser une intégration par parties faisant intervenir une primitive F de f.
- **Q 4.** En déduire que l'intégrale $\int_0^{+\infty} h(x) dx$ converge et que

$$\int_{0}^{+\infty} f(x) dx = \int_{0}^{+\infty} h(x) dx.$$

On pourra utiliser une intégration par parties.

Q 5. Démontrer que, pour tout x > 0,

$$\exp\left(\frac{1}{x}\int_0^x \ln(f(t))dt\right) \leqslant \frac{e}{x^2}\int_0^x tf(t)dt.$$

On pourra remarquer que $\ln(f(t)) = \ln(tf(t)) - \ln(t)$.

Q 6. En déduire que $x \mapsto \exp\left(\frac{1}{x} \int_0^x \ln(f(t)) dt\right)$ est intégrable sur \mathbb{R}_+^* et que

$$\int_0^{+\infty} \exp\left(\frac{1}{x} \int_0^x \ln(f(t)) dt\right) dx \leqslant e \int_0^{+\infty} f(x) dx.$$

* * *

Exercice 2 : Permutations conjuguées

Soit $n \geq 2$ un entier naturel.

On note \mathfrak{S}_n le groupe des permutations de $[\![1,n]\!]$. On notera la composition des permutations de manière multiplicative; par exemple, si γ et σ sont deux permutations de \mathfrak{S}_n , $\gamma^3\sigma^2 = \gamma \circ \gamma \circ \gamma \circ \sigma \circ \sigma$. On dit que deux permutations σ et τ de \mathfrak{S}_n sont <u>conjuguées</u> s'il existe une permutation $\rho \in \mathfrak{S}_n$ telle que $\tau = \rho \sigma \rho^{-1}$.

Pour $\ell \in [\![2,n]\!]$, on rappelle que, dans \mathfrak{S}_n , un <u>cycle de longueur</u> ℓ est une permutation $\gamma \in \mathfrak{S}_n$ pour laquelle il existe ℓ éléments deux à deux distincts a_1, \ldots, a_ℓ de $[\![1,n]\!]$ tels que

$$\gamma(x) = \begin{cases} x & \text{si } x \notin \{a_1, \dots, a_\ell\} \\ a_{i+1} & \text{si } x = a_i \text{ pour } i \leqslant \ell - 1 . \\ a_1 & \text{si } x = a_\ell \end{cases}$$

L'ensemble Supp $(\gamma) = \{a_1, \dots, a_\ell\}$ est appelé support du cycle γ et on note $\gamma = (a_1 \ a_2 \ \cdots \ a_\ell)$.

Q 1. Fixons une permutation $\sigma \in \mathfrak{S}_n$. On considère la relation binaire \mathcal{R} sur l'ensemble [1, n], définie par :

$$\forall (x,y) \in [1,n]^2, \qquad x\mathcal{R}y \iff \exists k \in \mathbb{Z}, \quad y = \sigma^k(x).$$

Montrer que \mathcal{R} est une relation d'équivalence sur [1, n].

Q 2. Soit $\sigma \in \mathfrak{S}_n$ et $i \in [1, n]$. Montrer qu'il existe un plus petit entier $\ell \in \mathbb{N}^*$ tel que $\sigma^{\ell}(i) = i$. En déduire que la classe d'équivalence de i (pour la relation \mathcal{R} précédente) est

$$X_i = cl(x_i) = \{i, \sigma(i), \cdots, \sigma^{\ell-1}(i)\},\$$

et que cette classe est de cardinal ℓ .

Q 3. En déduire le théorème suivant :

Toute permutation $\sigma \in \mathfrak{S}_n$ différente de Id se décompose en produit commutatif de cycles $\gamma_1, \ldots, \gamma_r$ à supports disjoints :

$$\sigma = \gamma_1 \dots \gamma_r$$
.

On peut également montrer que cette décomposition est unique à l'ordre des facteurs près, mais nous l'admettrons ici.

- **Q 4.** On considère, dans cette question uniquement, n=7 et les cycles $\gamma_1=\begin{pmatrix} 1 & 3 & 7 \end{pmatrix}$ et $\gamma_2=\begin{pmatrix} 2 & 6 & 4 \end{pmatrix}$. On considère également une permutation $\rho\in\mathfrak{S}_7$ telle que $\rho(1)=2,\ \rho(3)=6$ et $\rho(7)=4$. Vérifier que $\rho\gamma_1\rho^{-1}=\gamma_2$.
- **Q 5.** Plus généralement, montrer que, dans \mathfrak{S}_n , deux cycles de même longueur sont conjugués.

Pour $\sigma \in \mathfrak{S}_n$ et $\ell \in [2, n]$, on note $c_{\ell}(\sigma)$ le nombre de cycles de longueur ℓ dans la décomposition de σ en cycles à supports disjoints. On note $c_1(\sigma)$ le nombre de points fixes de σ :

$$c_1(\sigma) = \text{Card}\{j \in [1, n], \ \sigma(j) = j\}.$$

Q 6. Montrer que $\sigma \in \mathfrak{S}_n$ et $\tau \in \mathfrak{S}_n$ sont conjuguées si et seulement si pour tout $\ell \in [1, n]$, $c_{\ell}(\sigma) = c_{\ell}(\tau)$.

La matrice ligne $T_{\sigma} = \begin{pmatrix} c_1(\sigma) & c_2(\sigma) & \cdots & c_n(\sigma) \end{pmatrix}$ s'appelle le <u>type cyclique</u> de σ . On vient donc de démontrer que deux permutations sont conjuguées si et seulement si elles ont le même type cyclique.

* * *

Exercice 3 : Fonctions arithmétiques multiplicatives et applications

Notations

On note $\lfloor x \rfloor$ la partie entière du nombre réel x, c'est à dire le plus grand nombre entier inférieur ou égal à x.

On note ${\mathcal P}$ l'ensemble des nombres premiers.

On note $m \wedge n$ le plus grand commun diviseur (pgcd) des entiers naturels n et m.

Si a et b sont des entiers relatifs, on note $[a, b] = \{k \in \mathbb{Z}, a \leq k \leq b\}$.

L'ensemble des matrices carrées de taille n à coefficients dans \mathbb{C} est noté $\mathcal{M}_n(\mathbb{C})$.

La matrice identité de $\mathcal{M}_n(\mathbb{C})$ est notée I_n .

Le terme d'indice (i,j) d'une matrice $M \in \mathcal{M}_n(\mathbb{C})$ est noté $m_{i,j}$ et on note $M = (m_{i,j})_{(i,j) \in [\![1,n]\!]^2}$ ou plus simplement $M = (m_{i,j})$ lorsque la taille de M est implicite.

Pour $n \in \mathbb{N}^*$, on note \mathcal{D}_n l'ensemble des nombres entiers naturels divisant n et on écrit $\sum_{d \in \mathcal{D}_n} 1$

somme sur tous les nombres entiers naturels d divisant n.

Une fonction arithmétique est une fonction $f: \mathbb{N}^* \to \mathbb{C}$.

L'ensemble des fonctions arithmétiques est noté \mathbb{A} .

On dit qu'une fonction arithmétique $f \in \mathbb{A}$ est multiplicative si

$$\begin{cases} f(1) \neq 0 \\ \forall (m,n) \in (\mathbb{N}^*)^2, \ m \land n = 1 \implies f(mn) = f(m)f(n) \end{cases}$$

On note M l'ensemble des fonctions arithmétiques multiplicatives.

On note 1, δ et I les fonctions arithmétiques

$$\mathbf{1}: \begin{cases} \mathbb{N}^* \to \mathbb{C} \\ n \mapsto 1 \end{cases} , \quad \delta: \begin{cases} \mathbb{N}^* \to \mathbb{C} \\ n \mapsto \begin{cases} 1 & \text{si } n = 1 \\ 0 & \text{si } n \geqslant 2 \end{cases} , \quad \mathbf{I}: \begin{cases} \mathbb{N}^* \to \mathbb{C} \\ n \mapsto n \end{cases} .$$

On remarque que ces trois fonctions arithmétiques sont multiplicatives.

Si f et g sont deux fonctions arithmétiques, le <u>produit de convolution</u> de f et g est la fonction arithmétique notée f * g définie par

$$\forall n \in \mathbb{N}^*, \qquad (f * g)(n) = \sum_{d|n} f(d)g\left(\frac{n}{d}\right).$$

A. Propriétés générales de la loi *

Q 1. Vérifier que δ est un élément neutre pour la loi *.

Pour tout $n \in \mathbb{N}^*$, on note $\mathcal{C}_n = \{(d_1, d_2) \in (\mathbb{N}^*)^2, d_1 d_2 = n\}.$

Q 2. Justifier que, pour tout $n \in \mathbb{N}^*$,

$$(f * g)(n) = \sum_{(d_1, d_2) \in \mathcal{C}_n} f(d_1)g(d_2).$$

Q 3. En déduire que * est commutative.

Q 4. De même, en exploitant l'ensemble $C'_n = \{(d_1, d_2, d_3) \in (\mathbb{N}^*)^3, d_1 d_2 d_3 = n\}$, montrer que * est associative.

Q 5. Que peut-on dire de $(\mathbb{A}, +, *)$?

B. Groupe des fonctions multiplicatives

 \mathbf{Q} 6. Soient f et g deux fonctions multiplicatives. Montrer que si

$$\forall p \in \mathcal{P}, \ \forall k \in \mathbb{N}^*, \ f(p^k) = q(p^k)$$

alors f = g.

 \mathbf{Q} 7. Soient m et n deux entiers naturels non nuls premiers entre eux. Montrer que l'application

$$\pi: \begin{cases} \mathcal{D}_n \times \mathcal{D}_m \to \mathcal{D}_{mn} \\ (d_1, d_2) \mapsto d_1 d_2 \end{cases}$$

est bien définie et réalise une bijection entre $\mathcal{D}_n \times \mathcal{D}_m$ et \mathcal{D}_{mn} .

Q 8. En déduire que si f et g sont deux fonctions multiplicatives, alors f * g est encore multiplicatives.

 \mathbf{Q} 9. Soit f une fonction multiplicative. Montrer qu'il existe une fonction multiplicative g telle que

$$\forall p \in \mathcal{P}, \ \forall k \in \mathbb{N}^*, \ g(p^k) = -\sum_{i=1}^k f(p^i)g(p^{k-i})$$

et qu'elle vérifie $f * g = \delta$.

Q 10. Que dire de l'ensemble M muni de la loi *?

C. La fonction de Möbius

Soit μ la fonction arithmétique définie par

$$\mu(n) = \begin{cases} 1 & \text{si } n = 1 \\ (-1)^r & \text{si } n \text{ est le produit de } r \text{ nombres premiers distincts }. \\ 0 & \text{sinon} \end{cases}$$

Q 11. Montrer que μ est multiplicative.

Q 12. Montrer que $\mu * \mathbf{1} = \delta$.

Q 13. Soit $f \in \mathbb{A}$ et soit $F \in \mathbb{A}$ telle que, pour tout $n \in \mathbb{N}^*$, $F(n) = \sum_{d|n} f(d)$.

Montrer que pour tout $n \in \mathbb{N}^*$,

$$f(n) = \sum_{d|n} \mu(d) F\left(\frac{n}{d}\right).$$

On note φ la fonction indicatrice d'Euler, définie par :

$$\forall n \in \mathbb{N}^*, \quad \varphi(n) = \operatorname{card}\{k \in [1, n], \ k \land n = 1\}.$$

Q 14. Démontrer que $\varphi = \mu * \mathbf{I}$.

D. Déterminant de Smith

Soient f une fonction arithmétique, $n \in \mathbb{N}^*$ et $g = f * \mu$. On note $M = (m_{i,j})$ la matrice de $\mathcal{M}_n(\mathbb{C})$ de terme général $m_{i,j} = f(i \wedge j)$. On définit aussi la matrice des diviseurs $D = (d_{i,j})$ par

$$d_{i,j} = \begin{cases} 1 & \text{si } j \text{ divise } i, \\ 0 & \text{sinon} \end{cases}$$

Soit M' la matrice de terme général $m'_{i,j} = \begin{cases} g(j) & \text{si } j \text{ divise } i, \\ 0 & \text{sinon} \end{cases}$.

Q 15. Montrer que $M = M'D^T$ où D^T est la transposée de D.

 \mathbf{Q} 16. En déduire que le déterminant de M vaut

$$\det(M) = \prod_{k=1}^{n} g(k).$$

E. Séries de Dirichlet

Soit f une fonction arithmétique. On définit, pour tout réel s tel que la série converge,

$$L_f(s) = \sum_{k=1}^{\infty} \frac{f(k)}{k^s}.$$

On appelle abscisse de convergence de \mathcal{L}_f

$$A_c(f) = \inf\{s \in \mathbb{R}, \text{ la série } \sum \frac{f(k)}{k^s} \text{ converge absolument}\}.$$

On convient que $A_c(f) = +\infty$ si l'ensemble ci-dessus est vide.

- **Q 17.** Montrer que si $s > A_c(f)$, alors la série $\sum \frac{f(k)}{k^s}$ converge absolument.
- **Q 18.** Soient f et g deux fonctions arithmétiques d'abscisses de convergence finies. Montrer que si, pour tout $s > \max(A_c(f), A_c(g)), L_f(s) = L_g(s)$, alors f = g.
- **Q 19.** Soient f et g deux fonctions multiplicatives d'abscisses de convergence finies. Montrer que, pour tout $s > \max(A_c(f), A_c(g))$,

$$L_f(s)L_g(s) = L_{f*g}(s)$$

* * *