Corrigé du DS01 du 14/09/2024 (4h)

Exercice 1:

1. (a) Par croissances comparées, on a

$$nu_n = \frac{\sqrt{n}}{\ln(n)} \underset{n \to +\infty}{\longrightarrow} +\infty,$$

donc à partir d'un certain rang, on a l'inégalité $nu_n \ge 1$, c'est-à-dire $u_n \ge \frac{1}{n}$. On en déduit par comparaison de SATP que $\sum u_n$ diverge.

(b) Toujours par croissances comparées :

$$n^{\alpha}u_n = \frac{\ln(n)}{n^{\frac{3}{2} - \alpha}}$$

tend vers 0 lorsque $n \to +\infty$ dès que $\alpha < \frac{3}{2}$. Ainsi, en choisissant $\alpha \in]1, \frac{3}{2}[$ (par exemple $\alpha = 5/4$), on a $u_n = o(1/n^{\alpha})$ avec $\alpha > 1$, donc $\sum u_n$ converge.

(c) Pour tout $n \in \mathbb{N}$, on a $u_n = \frac{1}{\binom{2n}{n}} = \frac{(n!)^2}{(2n)!} > 0$, donc on peut utiliser la règle de d'Alembert :

$$\frac{u_{n+1}}{u_n} = \frac{((n+1)!)^2}{(2n+2)!} \times \frac{(2n)!}{(n!)^2} = \frac{(n+1)^2}{(2n+2)(2n+1)} \xrightarrow[n \to +\infty]{} \frac{1}{4} < 1,$$

(la limite s'obtient simplement en considérant un équivalent) donc $\sum u_n$ converge.

2. (a) Théorème de sommation des relations de comparaison, cas convergent : Soit $(u_n) \in \mathbb{K}^{\mathbb{N}}$, et $(v_n) \in \mathbb{R}^{\mathbb{N}}$.

On suppose que (v_n) est positive à partir d'un certain rang $n_0 \in \mathbb{N}$ et que $\sum v_n$ converge.

(i) Si
$$u_n = O(v_n)$$
, alors $\sum u_n$ converge et $\sum_{k=n+1}^{+\infty} u_k = O\left(\sum_{k=n+1}^{+\infty} v_k\right)$.

(ii) Si
$$u_n = o(v_n)$$
, alors $\sum u_n$ converge et $\sum_{k=n+1}^{+\infty} u_k = o\left(\sum_{k=n+1}^{+\infty} v_k\right)$.

(iii) Si
$$u_n \sim v_n$$
, alors $\sum u_n$ converge et $\sum_{k=n+1}^{+\infty} u_k \underset{n \to +\infty}{\sim} \sum_{k=n+1}^{+\infty} v_k$.

(b) Puisque $\frac{1}{k^3+k} \sim \frac{1}{k^3+k} \sim \frac{1}{k^3} > 0$ et $\sum \frac{1}{k^3}$ converge, on en déduit d'après le théorème précédemment cité que $\sum \frac{1}{k^3+k}$ converge (ce qui justifie l'existence du reste R_n) et

$$R_n = \sum_{k=n+1}^{+\infty} \frac{1}{k^3 + k} \sim \sum_{k=n+1}^{\infty} \frac{1}{k^3}.$$

Pour déterminer un équivalent de ce dernier reste, on procède classiquement par comparaison série-intégrale : la fonction $f:t\mapsto \frac{1}{t^3}$ est continue et décroissante sur $]0,+\infty[$, donc

$$\forall k \ge 2, \qquad \int_{k}^{k+1} \frac{dt}{t^3} \le \frac{1}{k^3} \le \int_{k-1}^{k} \frac{dt}{t^3},$$

donc par sommation et relation de Chasles, on obtient pour tous entiers $2 \le n \le N$:

$$\int_{n+1}^{N+1} \frac{dt}{t^3} \le \sum_{k=n+1}^{N} \frac{1}{k^3} \le \int_{n}^{N} \frac{dt}{t^3},$$

c'est-à-dire

$$\frac{1}{2(n+1)^2} - \frac{1}{2(N+1)^2} \le \sum_{k=n+1}^{N} \frac{1}{k^3} \le \frac{1}{2n^2} - \frac{1}{2N^2}.$$

En passant à la limite lorsque $N \to +\infty$ dans cette inégalité, on obtient un encadrement du reste:

$$\frac{1}{2(n+1)^2} \le \sum_{k=n+1}^{+\infty} \frac{1}{k^3} \le \frac{1}{2n^2},$$

ce qui donne immédiatement $\sum_{n=-1}^{+\infty} \frac{1}{k^3} \underset{n \to +\infty}{\sim} \frac{1}{2n^2}$. Finalement, $R_n \underset{n \to +\infty}{\sim} \frac{1}{2n^2}$.

(a) Etudier la sommabilité de la famille complexe $(u_n)_{n\in\mathbb{Z}}=(r^{|n|}e^{in\theta})_{n\in\mathbb{Z}}$ revient à étudier la sommabilité de la famille positive $(|u_n|)_{n\in\mathbb{Z}} = (r^{|n|})_{n\in\mathbb{Z}}$.

Par le théorème de sommation par paquets pour les familles de réels positifs, nous avons, dans $\mathbb{R}^+ \cup \{+\infty\}$:

$$\sum_{n \in \mathbb{Z}} |u_n| = |u_0| + \sum_{n \in \mathbb{N}^*} |u_n| + \sum_{n \in \mathbb{N}^*} |u_{-n}| = 1 + 2 \sum_{n \in \mathbb{N}^*} r^n.$$

Ainsi, la famille $(u_n)_{n\in\mathbb{Z}}$ est sommable si et seulement si $\sum_{n=1}^{\infty} r^n < +\infty$, c'est-à-dire si et seulement si r < 1.

(b) Pour $r \in [0,1[$ et $\theta \in \mathbb{R}$, on peut donc appliquer le théorème de sommation par paquets pour les familles complexes, qui donne ici :

$$S = \sum_{n \in \mathbb{Z}} u_n = u_0 + \sum_{n \in \mathbb{N}^*} u_n + \sum_{n \in \mathbb{N}^*} u_{-n} = 1 + \sum_{n \in \mathbb{N}^*} r^n e^{in\theta} + \sum_{n \in \mathbb{N}^*} r^n e^{-in\theta},$$

c'est-à-dire

$$S = 1 + \sum_{n=1}^{+\infty} (re^{i\theta})^n + \sum_{n=1}^{+\infty} (re^{-i\theta})^n = 1 + \underbrace{\frac{re^{i\theta}}{1 - re^{i\theta}}}_{=Z} + \underbrace{\frac{re^{-i\theta}}{1 - re^{-i\theta}}}_{-\overline{Z}}.$$

On peut simplifier:

$$Z = \frac{re^{i\theta}}{1 - re^{i\theta}} = \frac{re^{i\theta}(1 - re^{-i\theta})}{|1 - re^{i\theta}|^2} = \frac{re^{i\theta} - r^2}{|1 - re^{i\theta}|^2}.$$

donc

$$S = 1 + 2Re(Z) = 1 + 2r\left(rac{\cos(heta) - r}{1 - 2r\cos(heta) + r^2}
ight) = rac{1 - r^2}{1 - 2r\cos(heta) + r^2}.$$

- 4. (a) Montrons par récurrence que $(u_n)_{n\in\mathbb{N}}$ est bien définie et strictement positive :
 - $u_0 = 1 > 0$;
 - Soit $n \in \mathbb{N}$. Supposons que $u_n > 0$. Alors $u_{n+1} = \frac{u_n}{1 + u_n^2}$ est bien défini et strictement positif (comme quotient de réels strictement positifs).

Ensuite, (u_n) est décroissante car $u_{n+1} = \frac{u_n}{1+u_n^2} \le u_n$ pour tout $n \in \mathbb{N}$.

Ainsi, étant décroissante et minorée par 0, la suite (u_n) converge vers un réel $\ell \geq 0$. En passant à la limite dans la relation $u_{n+1} = \frac{u_n}{1+u_n^2}$, on obtient l'équation "au point fixe" :

$$\ell = \frac{\ell}{1 + \ell^2} \iff \ell^3 = 0 \iff \ell = 0,$$

donc (u_n) converge vers 0.

(b) Soit $\alpha < 0$. On a, pour tout $n \in \mathbb{N}$:

$$u_{n+1}^{\alpha} - u_n^{\alpha} = u_n^{\alpha} \left((1 + u_n^2)^{-\alpha} - 1 \right).$$

Puisque $u_n^2 \underset{n \to +\infty}{\longrightarrow} 0$, on a le développement asymptotique :

$$u_{n+1}^{\alpha} - u_n^{\alpha} = u_n^{\alpha} \left(1 - \alpha u_n^2 + o(u_n^2) - 1 \right) = -\alpha u_n^{\alpha+2} + o(u_n^{\alpha+2}).$$

En choisissant $\alpha = -2$, on obtient $u_{n+1}^{-2} - u_n^{-2} = 2 + o(1) \underset{n \to +\infty}{\to} 2$.

(c) D'après la question précédente, $u_{n+1}^{-2} - u_n^{-2} \underset{n \to +\infty}{\sim} 2 > 0$ et la série $\sum 2$ diverge, donc d'après le théorème de sommation des relations de comparaison, cas divergent, on obtient

$$\sum_{k=0}^{n-1} (u_{k+1}^{-2} - u_k^{-2}) \underset{n \to +\infty}{\sim} \sum_{k=0}^{n-1} 2,$$

c'est-à-dire

$$u_n^{-2} - 1 \sim 2n$$
.

On en déduit $u_n^{-2} \underset{n \to +\infty}{\sim} 2n$, puis $u_n \underset{n \to +\infty}{\sim} (2n)^{-1/2} = \frac{1}{\sqrt{2n}}$.

* * *

Exercice 2 : extrait de l'épreuve EM Lyon 2022 (MP/PC/PSI)

- 1. Si $\mu \neq \lambda$, alors $u_n(\mu) = \frac{\omega_n + \mu}{n} = u_n(\lambda) + \frac{\mu \lambda}{n}$. Vu que $\mu \lambda \neq 0$, la série $\sum_{n \geq 1} \frac{\mu \lambda}{n}$ diverge et puisque la série $\sum_{n \geq 1} u_n(\lambda)$ converge, on obtient par somme que **la série** $\sum_{n \geq 1} u_n(\mu)$ **diverge**.
- 2. (a) Par d-périodicité de la suite (ω_n) , on a $\omega_{md+k} = \omega_k$ pour tous entiers $(m,k) \in \mathbb{N} \times \mathbb{N}^*$, et donc $\forall m \in \mathbb{N}, \ \frac{1}{md+1} \sum_{k=1}^d \omega_{md+k} = \frac{\Omega}{md+1}$, en notant $\Omega = \sum_{k=1}^d \omega_k$.
 - (b) Pour tout $m \in \mathbb{N}$, on a par téléscopage

$$S_{(m+1)d} - S_{md} = \sum_{k=md+1}^{md+d} \frac{\omega_k}{k} = \sum_{j=1}^d \frac{\omega_{md+j}}{md+j} = \sum_{j=1}^d \frac{\omega_{md+j}}{md+j}$$

donc

$$S_{(m+1)d} - S_{md} - \frac{1}{md+1} \sum_{j=1}^{d} \omega_{md+j} = \sum_{j=1}^{d} \omega_{md+j} \left(\frac{1}{md+j} - \frac{1}{md+1} \right)$$
$$= \sum_{j=1}^{d} \omega_{j} \frac{1-j}{(md+1)(md+j)}.$$

En multipliant par m^2 , on obtient

$$m^{2} \left(S_{(m+1)d} - S_{md} - \frac{1}{md+1} \sum_{j=1}^{d} \omega_{md+j} \right) = \sum_{j=1}^{d} \omega_{j} \frac{(1-j)m^{2}}{(md+1)(md+j)}.$$

Pour tout $j \in [1,d]$, on a $\frac{(1-j)m^2}{(md+1)(md+j)} \xrightarrow[m \to +\infty]{} \frac{1-j}{d^2}$. Par somme finie de limites lorsque $m \to +\infty$ (licite car la somme comporte d termes et d ne dépend pas de m), on obtient

$$m^2 \left(S_{(m+1)d} - S_{md} - \frac{1}{md+1} \sum_{j=1}^d \omega_{md+j} \right) \underset{m \to +\infty}{\longrightarrow} \frac{1}{d^2} \sum_{j=1}^d (1-j)\omega_j.$$

En notant $\alpha = \frac{1}{d^2} \sum_{j=1}^{d} (1-j)\omega_j$, on a donc

$$m^{2}\left(S_{(m+1)d} - S_{md} - \frac{1}{md+1}\sum_{j=1}^{d}\omega_{md+j}\right) = \alpha + o(1),$$

c'est-à-dire

$$S_{(m+1)d}-S_{md}=rac{1}{md+1}\sum_{i=1}^d \omega_{md+j}+rac{lpha}{m^2}+o\left(rac{1}{m^2}
ight).$$

(c) La question précédente implique notamment

$$S_{(m+1)d} - S_{md} = \frac{\Omega}{md+1} + O(1/m^2).$$

- Si $\Omega = 0$, alors $S_{(m+1)d} S_{md} = O(1/m^2)$, donc la série $\sum_{m \ge 1} (S_{(m+1)d} S_{md})$ converge (absolument).
- Si $\Omega \neq 0$, on a $S_{(m+1)d} S_{md} \sim \frac{\Omega}{m}$, donc par comparaison à la série harmonique, la série $\sum_{m>1} (S_{(m+1)d} S_{md})$ diverge.

Finalement, la série $\sum_{m\geq 1}(S_{(m+1)d}-S_{md})$ converge si et seulement si $\Omega=0.$

- (d) Si la série $\sum_{n\geq 1} u_n$ converge, alors la suite $(S_n)_{n\geq 1}$ converge, donc la suite extraite $(S_{md})_{m\geq 1}$ (formée des indices multiples de d) converge. Par le lien suite-série, on en déduit que la série téléscopique $\sum_{m\geq 1} (S_{(m+1)d} S_{md})$ converge.
 - Réciproquement, si la série téléscopique $\sum_{m\geq 1} (S_{(m+1)d} S_{md})$ converge, alors (toujours par le lien suite-série), il existe la suite $(S_{md})_{m\geq 1}$ converge vers un réel S. Ainsi, pour la suite $(S_n)_{n\geq 1}$, l'extraction formée des rangs multiples de d converge. Montrons maintenant que les extractions de **toutes** les classes de congruence modulo d convergent, c'est-à-dire les suites $(S_{md+i})_{m\geq 1}$ avec $i\in [0,d-1]$ fixé. Cela résulte du fait que

$$S_{md+i} = S_{md} + \sum_{j=1}^{i} \frac{\omega_{md+j}}{md+j} = S_{md} + \sum_{j=1}^{i} \frac{\omega_{j}}{md+j} \xrightarrow[m \to +\infty]{} S,$$

puisque $\sum_{j=1}^{i} \frac{\omega_j}{md+j} \xrightarrow[m \to +\infty]{} 0$ comme somme de i termes tendant vers 0 (ici, i ne dépend pas de m).

Puisque les d classes de congruence modulo d partitionnent \mathbb{N} et que toutes les suites $(S_{md+i})_{m\geq 1}$ convergent vers la même limite S (pour $i\in [0,d-1]$), on en déduit que la suite $(S_n)_{n\geq 1}$ converge vers S.

On a donc bien montré les équivalences :

$$\sum_{n\geq 1} u_n \text{ converge } \iff \sum_{m\geq 1} (S_{(m+1)d} - S_{md}) \text{ converge } \iff \Omega = 0.$$

- 3. Soit $\lambda \in \mathbb{C}$. Posons $\omega'_n = \omega_n + \lambda$. Comme (ω_n) , la suite (ω'_n) est d-périodique. En raisonnant avec (ω'_n) au lieu de (ω_n) , les questions 2.(c) et 2.(d) montrent que la série de terme général $u_n(\lambda) = \frac{\omega'_n}{n}$ converge si et seulement si $\sum_{k=1}^d \omega'_k = 0$, c'est-à-dire si et seulement si $\lambda = -\Omega/d$.
- 4. (a) Soit $n \in \mathbb{N}^*$. Par division euclidienne, il existe un unique couple $(m, r) \in \mathbb{N} \times [0, d 1]$ tel que n = dm + r. Dès lors, en sommant "par tranches successives" :

$$T_n = \sum_{k=1}^n \omega_k = \sum_{j=0}^{m-1} (\omega_{dj+1} + \dots + \omega_{d(j+1)}) + \omega_{dm+1} + \dots + \omega_{dm+r}.$$

Par la périodicité et l'hypothèse $\Omega=0$, chaque paquet de taille d est nul car :

$$\forall j \in \mathbb{N}, \qquad \omega_{dj+1} + \dots + \omega_{d(j+1)} = \omega_1 + \dots + \omega_d = \Omega = 0.$$

Donc

$$T_n = \omega_{dm+1} + \dots + \omega_{dm+r} = \omega_1 + \dots + \omega_r,$$

et on en déduit que

$$|T_n| \le \sum_{k=1}^r |\omega_k| \le \sum_{k=1}^{d-1} |\omega_k| = C_d,$$

ce qui montre que (T_n) est bornée car la constante C_d ne dépend pas de n.

(b) C'est le principe de la "transformation d'Abel". En écrivant que $\omega_n = T_n - T_{n-1}$ pour tout $n \ge 1$, on obtient

$$\sum_{k=1}^{n} u_k = \sum_{k=1}^{n} \frac{T_k - T_{k-1}}{a_k} = \sum_{k=1}^{n} \frac{T_k}{a_k} - \sum_{k=0}^{n-1} \frac{T_k}{a_{k+1}} = \sum_{k=1}^{n} T_k \left(\frac{1}{a_k} - \frac{1}{a_{k+1}} \right) + \frac{T_n}{a_{n+1}} - \frac{T_0}{a_1},$$

d'où la formule voulue puisque $T_0 = 0$.

(c) Pour tout $k \geq 1$, on a en utilisant les notations des questions précédentes :

$$\left| T_k \left(\frac{1}{a_k} - \frac{1}{a_{k+1}} \right) \right| \le C_d \left(\frac{1}{a_k} - \frac{1}{a_{k+1}} \right)$$

(la croissance de (a_n) donne $\frac{1}{a_k} - \frac{1}{a_{k+1}} \ge 0$ pour tout k, ce qui permet d'enlever la valeur absolue).

On conclut alors par comparaison de SATP : la série téléscopique $\sum_{k>1} C_d \left(\frac{1}{a_k} - \frac{1}{a_{k+1}} \right)$

converge (d'après le lien suite-série puisque la suite $(1/a_k)$ converge, ici vers 0), donc la série $\sum_{k>1} \left| T_k \left(\frac{1}{a_k} - \frac{1}{a_{k+1}} \right) \right|$ converge.

Finalement, la série $\sum_{k>1} T_k \left(\frac{1}{a_k} - \frac{1}{a_{k+1}} \right)$ converge absolument donc elle converge.

(d) La question précédente montre que $\lim_{n\to+\infty}\sum_{k=1}^n T_k\left(\frac{1}{a_k}-\frac{1}{a_{k+1}}\right)$ existe dans $\mathbb C$.

En outre, $\lim_{n\to+\infty} \frac{T_n}{a_{n+1}} = 0$ car T_n est bornée et $a_{n+1}\to+\infty$.

Donc par somme et d'après 4.(b), les sommes partielles $\sum_{k=1}^{n} u_k$ possèdent une limite dans \mathbb{C}

lorsque $n\to +\infty,$ c'est-à-dire que la série $\sum_{k\geq 1} u_k$ converge.

* * *

Exercice 3: "Vrai ou Faux?" AVEC justification

1. \mathbf{FAUX} : si u est injective, alors u n'est pas nécessairement surjective.

Par exemple, $u: \begin{cases} \mathbb{R} \longrightarrow \mathbb{R}^2 \\ t \longmapsto (t,0) \end{cases}$ est linéaire, injective (car $u(t) = u(t') \Longrightarrow (t,0) = (t',0) \Longrightarrow t = t'$) mais non surjective (son image est la droite Vect(1,0), et non pas \mathbb{R}^2 tout entier).

2. **VRAI** : si $Ker(u) = \{0_E\}$, alors u est injective. En effet, si on suppose $Ker(u) = \{0_E\}$, alors par linéarité de u :

$$u(t) = u(t') \iff u(t - t') = 0_F \iff t - t' \in Ker(u) \iff t - t' \in \{0_E\} \iff t = t',$$

donc u est injective.

3. **VRAI**: si u est injective, alors $Ker(u) = \{0_E\}$. En effet, si on suppose u injective, alors puisque $u(0_E) = 0_F$:

$$x \in Ker(u) \iff u(x) = 0_F \iff u(x) = u(0_E) \iff x = 0_E,$$

ce qui montre que Ker(u) n'est constitué que du vecteur 0_E .

4. **VRAI** : Im(u) est un SEV de F.

En effet, $0_F = u(0_E) \in Im(u)$, et pour tous vecteurs y_1, y_2 de Im(u), il existe x_1, x_2 dans E tels que $y_1 = u(x_1)$ et $y_2 = u(x_2)$. Donc, pour tout $\lambda \in \mathbb{K}$:

$$\lambda y_1 + y_2 = \lambda u(x_1) + u(x_2) = u(\lambda x_1 + x_2) \in Im(u),$$

ce qui montre que Im(u) est stable par combinaison linéaire.

5. **FAUX**: si (e_1, \dots, e_n) est libre dans E, alors $(u(e_1), \dots, u(e_n))$ n'est pas nécessairement libre dans E

Par exemple, si on prend $u = 0_{\mathcal{L}(E,F)}$ (l'application qui envoie tout vecteur $x \in E$ sur 0_F), alors n'importe quelle famille libre (e_1, \dots, e_n) se transforme par u en la famille $(0_F, \dots, 0_F)$, qui est évidemment liée.

6. **VRAI** : si (e_1, \dots, e_n) est une base de E, alors $(u(e_1), \dots, u(e_n))$ est génératrice de Im(u). En effet : soit $y \in Im(u)$. Il existe $x \in E$ tel que y = u(x). Or, (e_1, \dots, e_n) est une base de E, donc il existe des scalaires uniques $\alpha_1, \dots, \alpha_n \in \mathbb{K}$ tels que $x = \sum_{i=1}^n \alpha_i e_i$. On en déduit que

$$y = u\left(\sum_{i=1}^{n} \alpha_i e_i\right) = \sum_{i=1}^{n} \alpha_i u(e_i),$$

ce qui montre que tout vecteur de Im(u) est CL de $(u(e_1), \dots, u(e_n))$, c'est-à-dire $Im(u) \subset Vect(u(e_1), \dots, u(e_n))$. L'inclusion réciproque est également vraie car les $u(e_i)$ sont dans Im(u).

7. **VRAI** : si $rg(u) = \dim(E)$, alors u est injective. En effet, d'après le théorème du rang, on a

$$\dim(Ker(u)) = \dim(E) - rg(u) = 0,$$

donc $Ker(u) = \{0_E\}$, ce qui implique l'injectivité de u.

8. **FAUX** : si $rg(u) = \dim(E)$, alors u n'est pas nécessairement surjective.

Par exemple, $u: \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R}^2 \\ t & \longmapsto & (t,0) \end{array} \right.$ est linéaire, de rang 1 (puisque son image est la droite Vect(1,0)), on a donc bien $\dim(\mathbb{R}) = rg(u)$ mais u non surjective puisque $Im(u) \neq \mathbb{R}^2$.

* * *

En appliquant ce théorème à w, on obtient :

Exercice 4 : extrait de l'épreuve Mines Albi, Alès, Douai, Nantes 2002

Partie I

- 1. (a) L'application w est linéaire car $Ker(u^{i+j})$ et E sont bien des \mathbb{R} -EV et car u^j est linéaire par composition d'applications linéaires. De plus, si $y \in Im(w)$, alors il existe $x \in Ker(u^{i+j})$ tel que $y = w(x) = u^j(x)$, donc
 - uⁱ(y) = u^{i+j}(x) = 0_E, ce qui montre l'inclusion Im(w) ⊂ Ker(uⁱ).
 (b) Enoncé du théorème du rang : si u : E → F est une application linéaire et si E est de dimension finie, alors Im(u) est de dimension finie et dim(E) = dim(Ker(u))+dim(Im(u)).

$$\dim(Ker(u^{i+j})) = \dim(Ker(w)) + \dim(Im(w)).$$

Puisque $Im(w) \subset Ker(u^i)$, on a $\dim(Im(w)) \leq \dim(Ker(u^i))$. De plus,

$$Ker(w) = \{x \in Ker(u^{i+j}), \ u^j(x) = 0_E\} = Ker(u^{i+j}) \cap Ker(u^j) = Ker(u^j),$$

donc on a bien l'inégalité

$$\dim(Ker(u^{i+j})) \le \dim(Ker(u^j)) + \dim(Ker(u^i)).$$

2. (a) Ici, rg(u) = 2 donc par le théorème du rang $\dim(Ker(u)) = \dim(E) - 2 = 1$. On utilise la question **1b** avec (i, j) = (1, 1), puis avec (i, j) = (2, 1):

$$\dim(Ker(u^2)) < 2\dim(Ker(u)) = 2,$$

$$\dim(Ker(u^3)) \le \dim(Ker(u)) + \dim(Ker(u^2)) = 1 + \dim(Ker(u^2)).$$

Puisque $u^3 = 0_{\mathcal{L}(E)}$, on a $Ker(u^3) = E$, d'où les inégalités

$$3 - 1 \le \dim(Ker(u^2)) \le 2,$$

et donc $\dim(Ker(u^2)) = 2$.

(b) Puisque $rg(u^2) = 3 - \dim(Ker(u^2)) = 1$, l'endomorphisme u^2 est non nul : **il existe donc** $e \in E$ tel que $u^2(e) \neq 0_E$.

Ensuite, montrons que la famille $\mathcal{B}' = (e, u(e), u^2(e))$ est libre : si $\alpha e + \beta u(e) + \gamma u^2(e) = 0_E$ avec $(\alpha, \beta, \gamma) \in \mathbb{R}^3$, alors en appliquant u^2 , on obtient (puisque $u^3 = 0$) $\alpha u^2(e) = 0_E$ donc $\alpha = 0$. D'où (en reportant dans la CL initiale) $\beta u(e) + \gamma u^2(e) = 0_E$, et en appliquant u, on obtient $\beta u^2(e) = 0_E$, ce qui amène $\beta = 0$, puis $\gamma u^2(e) = 0_E$ et enfin $\gamma = 0$ (toujours en reportant).

La famille \mathcal{B}' étant libre et de cardinal $3 = \dim(E)$, c'est une base de E.

(c) Par définition,
$$Mat_{\mathcal{B}'}(u) = Mat_{(e,u(e),u^2(e))}(u(e),u^2(e),u^3(e)) = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$
.

3. (a) On a rg(u) = 1 donc u est non nul, ce qui montre l'existence d'un vecteur $e \in E$ tel que $u(e) \neq 0_E$.

De plus, $u(e) \in Ker(u) \setminus \{0_E\}$ (car u^2 est nul) et Ker(u) est de dimension 2 (par le théorème du rang), donc on peut **compléter la famille libre** (u(e)) en une base (u(e), f) de Ker(u), qui est en particulier libre.

Montrons maintenant que $\mathcal{B}'' = (e, u(e), f)$ est une base de E: on a (u(e), f) libre et $e \notin Ker(u) = Vect(u(e), f)$, donc \mathcal{B}'' est libre. De plus, elle est de cardinal $3 = \dim(E)$ donc il s'agit bien d'une base de E.

(b) Par définition,
$$Mat_{\mathcal{B}''}(u) = Mat_{(e,u(e),f)}(u(e),u^2(e),u(f)) = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
.

Partie II

4. Par produit matriciel:

$$\mathbf{N} = \mathbf{T} - \mathbf{I_3} = \begin{pmatrix} \mathbf{0} & \alpha & \beta \\ \mathbf{0} & \mathbf{0} & \gamma \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \end{pmatrix}, \qquad N^2 = \begin{pmatrix} 0 & 0 & \alpha \gamma \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \qquad \mathbf{N^3} = \begin{pmatrix} \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \end{pmatrix},$$

$$\mathbf{M} = \mathbf{N^2} - \mathbf{N} = \left(\begin{array}{ccc} \mathbf{0} & -\alpha & \alpha \gamma - \beta \\ \mathbf{0} & \mathbf{0} & -\gamma \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \end{array} \right), \qquad \mathbf{M^3} = \left(\mathbf{N}(\mathbf{N} - \mathbf{I_3}) \right)^3 = \mathbf{N^3}(\mathbf{N} - \mathbf{I_3})^3 = \left(\begin{array}{ccc} \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \end{array} \right)$$

(car N et $N - I_3$ commutent et $N^3 = 0$).

De plus, en effectuant l'opération élémentaire $L_1 \leftarrow L_1 + \alpha L_2$, on transforme la matrice M en la matrice -N, donc rg(M) = rg(-N) = rg(N).

Enfin, on a $rg(N) \in \{0,1,2\}$ car la première colonne de N est nulle donc rg(N) < 3, et

les cas rg(N) = 0, 1, 2 sont tous possibles (en prenant par exemple $N = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ ou

$$N = \left(\begin{array}{ccc} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right) \text{ ou } N = \left(\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}\right).$$

5. Notons u et v les endomorphismes de E ayant pour matrices respectives N et M dans la base \mathcal{B} . D'après $\mathbf{4}$, on a $u^3=v^3=0$ $\mathcal{L}(E)$ et rg(u)=rg(v)=2, donc d'après $\mathbf{2c}$, il existe deux bases

$$\mathcal{B}_1$$
 et \mathcal{B}_2 de E telles que $Mat_{\mathcal{B}_1}(u) = Mat_{\mathcal{B}_2}(v) = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} = J$. Ceci montre que N et

M sont toutes deux semblables à J, et donc N et M sont semblables.

6. (a) Si rg(N) = 1, alors α ou γ est nul (sinon rg(N) = 2 car les deux dernières colonnes de N sont libres), donc $\alpha \gamma = 0$, ce qui amène $N^2 = 0$. On en déduit $M^2 = (N(N - I_3))^2 = N^2(N - I_3)^2 = 0$.

En introduisant les endomorphismes u et v ayant pour matrices N et M dans la base \mathcal{B} , on peut refaire le raisonnement de la question précédente, mais cette fois dans le cadre de la question **3b.** (puisque $u^2 = v^2 = 0$ et rg(u) = rg(v) = 1), qui montre que M et N sont encore semblables.

- (b) Si rq(N) = 0, alors N = M = 0, donc N et M sont encore semblables.
- 7. On a

$$T(I_3 + M) = (I_3 + N)(I_3 - N + N^2) = I_3 + N^3 = I_3$$

et de même $(I_3 + M)T = I_3$, donc T est inversible avec $T^{-1} = I_3 + M$.

8. Vu que M et N sont semblables, il existe $P \in GL_3(\mathbb{R})$ telle que $M = P^{-1}NP$. Donc

$$T^{-1} = I_3 + M = I_3 + P^{-1}NP = P^{-1}(I_3 + N)P = P^{-1}TP$$

ce qui montre que T est semblable à son inverse. On en déduit que A est semblable à son inverse : en effet, il existe par hypothèse $Q \in GL_3(\mathbb{R})$ telle que $T = Q^{-1}AQ$, donc A est inversible (comme T) et

$$Q^{-1}A^{-1}Q = T^{-1} = P^{-1}TP = P^{-1}Q^{-1}AQP.$$

Ainsi, $A^{-1} = (QP^{-1}Q^{-1})A(QPQ^{-1})$ ce qui montre que \boldsymbol{A} est semblable à $\boldsymbol{A^{-1}}$.

9. Prenons une matrice de symétrie $(A^2 = A)$, par exemple $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$. Vu que A est

inversible et $A^{-1} = A$, on a évidemment A semblable à A^{-1} , mais A n'est pas semblable à T, sinon on aurait Tr(A) = Tr(T) = 3, alors que Tr(A) = 1.

La réciproque annoncée est donc fausse.

10. (a) En résolvant le système $(A - I_3)\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$, on obtient

$$Ker(A-I_3) = Vect\left(\begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\-1 \end{pmatrix}\right)$$
, donc puisque A représente u dans la base

 $\mathcal{B} = (a, b, c)$, on en déduit $Ker(u - Id_E) = Vect(a, b - c)$.

Ainsi, la famille $(e_1, e_2) = (a, b - c)$ engendre $Ker(u - Id_E)$ et elle est clairement libre, donc c'est une base de $Ker(u - Id_E)$, qui est donc un SEV de dimension 2.

(b) La famille (e_1, e_2) est libre, et $c \notin Ker(u - Id_E) = Vect(e_1, e_2)$ (puisque par lecture des colonnes de A, $u(c) = -b + 2c \neq c$), donc (e_1, e_2, c) est libre, et de cardinal $3 = \dim(E)$, donc il s'agit d'une base de E.

Enfin,
$$Mat_{(e_1,e_2,c)}(u) = Mat_{(e_1,e_2,c)}(u(e_1),u(e_2),c) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} = T,$$

puisque $u(e_1) = e_1$, $u(e_2) = e_2$ (par définition de $Ker(u-Id_E)$), et $u(c) = -b + 2c = c - e_2$.

(c) La question précédente montre que A est semblable à T, matrice triangulaire supérieure avec des 1 sur la diagonale, donc d'après la question $\bf 8.$, les matrices $\bf A$ et $\bf A^{-1}$ sont semblables.

* * *