Centrale MP 2021 : épreuve 2 Un corrigé

I. Inégalité polynomiale de Bernstein et applications.

I.A - Polynômes de Tchebychev

- 1. On montre par récurrence que $\forall n \in \mathbb{N}, \deg(T_n) = n$.
 - C'est vrai aux rang 0 et 1.
 - Supposons le résultat vrai jusqu'à un rang $n \ge 1$. On a alors $T_{n+1} = 2XT_n T_{n-1}$ qui est somme de deux polynômes de degrés n+1 et n-1. Comme ces degrés sont différents, T_{n+1} est de degré $\max(n+1, n-1) = n+1$.

 $(T_k)_{0 \le k \le n}$ étant échelonnée en degré est libre. Elle contient n+1 éléments de $\mathbb{C}_n[X]$ qui est de dimension n+1. Ainsi,

$$(T_k)_{0 \le k \le n}$$
 est une base de $\mathbb{C}_n[X]$

- 2. Procédons encore par récurrence.
 - C'est vrai aux rang 0 et 1.
 - Supposons le résultat vrai jusqu'à un rang $n \geq 1.$ On a alors

$$T_{n+1}(\cos(\theta)) = 2\cos(\theta)T_n(\cos(\theta) + T_{n-1}(\cos(\theta))) = 2\cos(\theta)\cos(n\theta) - \cos((n-1)\theta)$$

Comme $2\cos(a)\cos(b) = \cos(a-b) + \cos(a+b)$, le résultat au rang n+1 s'en déduit.

$$\forall n \in \mathbb{N}, \ \forall \theta \in \mathbb{R}, \ T_n(\cos(\theta)) = \cos(n\theta)$$

3. Comme S_n est un espace-vectoriel, il suffit de prouver le résultat pour les éléments d'une base de $\mathbb{C}_n[X]$ (et de conclure par combinaisons linéaires). Or, la question précédente prouve l'appartenance pour les éléments de la base (T_0, \ldots, T_n) . Ainsi

$$\forall n \in \mathbb{N}, \ \forall P \in \mathbb{C}_n[X], \ \theta \mapsto P(\cos(\theta)) \in \mathcal{S}_n$$

4. Quand θ varie dans \mathbb{R} , $\cos(\theta)$ décrit tout [-1,1]. Ainsi la norme infinie de T_n sur [-1,1] est celle de $\theta \mapsto T_n(\cos(\theta))$ sur \mathbb{R} . Celle-ci vaut clairement 1 (puisque $|T_n(\cos(\theta))| = |\cos(n\theta)| \le 1$ avec égalité si $\theta = 0$).

$$\boxed{\forall n \in \mathbb{N}, \|T_n\|_{L^{\infty}([-1,1])} = 1}$$

5. Prouvons par récurrence sur n que

$$\forall \theta \in \mathbb{R}, |\sin(n\theta)| \leq n|\sin(\theta)|$$

- C'est immédiat au rang 0.
- Supposons le résultat vrai jusqu'à un rang $n \geq 0$. On a alors, pour tout réel θ ,

$$|\sin((n+1)\theta)| \leq |\sin(n\theta)\cos(\theta)| + |\sin(\theta)\cos(n\theta)| \leq |\sin(n\theta)| + |\sin(\theta)| \leq (n+1)|\sin(\theta)|$$

et le résultat est vrai au rang n+1.

Par ailleurs, en dérivant la relation $T_n(\cos(\theta)) = \cos(n\theta)$, on obtient

$$\forall \theta \in \mathbb{R}, -\sin(\theta)T'_n(\cos(\theta)) = -n\sin(n\theta)$$

En combinant ceci,

$$\forall \theta \in \mathbb{R}, \ |\sin(\theta)T'_n(\cos(\theta))| \le n^2|\sin(\theta)|$$

On en déduiit que si $\theta \neq 0[\pi]$, $|T'_n(\cos(\theta))| \leq n^2$. Par continuité de $\theta \mapsto T'_n(\cos(\theta))$, ceci reste vrai sur \mathbb{R} .

La norme infinie de T'_n sur [-1,1] est donc plus petite que n^2 .

En utilisant une expression précédente, on a

$$\forall \theta \in]0,\pi/2], \ |T_n'(\cos(\theta))| = n \frac{|\sin(n\theta)|}{\sin(\theta)} \mathop{\sim}_{\theta \to 0^+} n \frac{n\theta}{\theta} = n^2$$

et ainsi (continuité) $|T'_n(0)| = n^2$. On a donc

$$\forall n \in \mathbb{N}, \ \|T'_n\|_{L^{\infty}([-1,1))} = n^2$$

I.B - Inégalité de Bernstein

6. Par hypothèse, et en notant c le coefficient dominant de A,

$$A = c \prod_{j=1}^{2n} (X - \alpha_j)$$

On en déduit que

$$A' = c \sum_{k=1}^{2n} \prod_{\substack{1 \le j \le 2n \\ j \ne k}} (X - \alpha_j)$$

et en particulier

$$A'(\alpha_k) = c \prod_{\substack{1 \le j \le 2n \\ j \ne k}} (\alpha_k - \alpha_j)$$

Posons $L_k = \frac{A(X)}{(X - \alpha_k)A'(\alpha_k)}$. $L_k \in \mathbb{C}_{2n-1}[X]$ et on a (immédiat si $j \neq k$ et calcul précédent si j = k)

$$L_k(\alpha_j) = \delta_{j,k}$$

En particulier, $B - \sum_{k=1}^{2n} B(\alpha_k) L_k$ est nul en tous les α_j . Quans $B \in \mathbb{C}_{2n-1}[X]$, c'est un polynôme de degré $\leq 2n-1$ qui est donc nul (puisqu''il a au moins 2n racine).

$$\forall B \in \mathbb{C}_{2n-1}[X], \quad B(X) = \sum_{k=1}^{2n} B(\alpha_k) \frac{A(X)}{(X - \alpha_k) A'(\alpha_k)}$$

On peut aussi utiliser la décomposition en éléments simple de $\frac{B}{A}$, particulièrement aisée puisque les pôles sont simples.

- 7. On a $P_{\lambda}(1) = 0$ et donc (X 1) divise P_{λ} .
- 8. On fixe $\lambda \in \mathbb{C}$. Les deux membres de l'égalité à prouver étant des expressions linéaires vis à vis de P, il suffit de vérifier la formule pour des P formant une base de $\mathbb{C}_{2n}[X]$, par exemple les X^k . Or,

$$\frac{(\lambda X)^k - \lambda^k}{X - 1} = \lambda^k (X^{k-1} + X^{k-2} + \dots + 1)$$

et la valeur en 1 est $k\lambda^k$, qui est bien $\lambda(k\lambda^{k-1})$.

$$\forall \lambda \in \mathbb{C}, \ Q_{\lambda}(1) = \lambda P'(\lambda)$$

9. On remarque tout d'abord que

$$R(\omega_k) = e^{2in\varphi_k} + 1 = 0$$

et ω_k est racine de R. De plus

$$\varphi_k - \varphi_\ell = (k - \ell) \frac{\pi}{n}$$

Si $k, \ell \in [1, 2n]$, $-2n < k - \ell < 2n$ et donc $\varphi_k - \varphi_\ell \in]-2\pi, 2\pi[$ n'est nul que si $k = \ell$. On a ainsi 2n racines différentes pour R unitaire de degré 2n et donc

$$R(X) = \prod_{k=1}^{2n} (X - \omega_k)$$

10. Si on applique (I.1) avec A=R et $\alpha_k=\omega_k$ (qui sont bien distincts), on obtient, compte-tenu de $R'(\omega_k)=2n\omega_k^{2n-1}=-\frac{2n}{\omega_k}$ (puisque $\omega_k^{2n}=-1$)

$$B(X) = -\frac{1}{2n} \sum_{k=1}^{2n} \frac{B(\omega_k)R(X)}{X - \omega_k} \omega_k$$

Ceci est vrai pour $B \in \mathbb{C}_{2n-1}[X]$ et en particulier pour Q_{λ} . Comme les ω_k sont différents de 1, l'expression de Q_{λ} donne alors

$$\forall \lambda \in \mathbb{C}, \quad Q_{\lambda}(X) = -\frac{1}{2n} \sum_{k=1}^{2n} \frac{P(\lambda \omega_k) - P(\lambda)}{\omega_k - 1} \frac{X^{2n} + 1}{X - \omega_k} \omega_k$$

Appliquons cette formule en $\lambda = 1$. Avec la question 8, on a alors

$$\lambda P'(\lambda) = -\frac{1}{2n} \sum_{k=1}^{2n} \frac{P(\lambda \omega_k) - P(\lambda)}{\omega_k - 1} \frac{2}{1 - \omega_k} \omega_k$$

Il reste à couper la somme en deux pour conclure que

$$\forall \lambda \in \mathbb{C}, \quad \lambda P'(\lambda) = \frac{1}{2n} \sum_{k=1}^{2n} P(\lambda \omega_k) \frac{2\omega_k}{(1-\omega_k)^2} - \frac{P(\lambda)}{2n} \sum_{k=1}^{2n} \frac{2\omega_k}{(1-\omega_k)^2}$$

11. (I.2) avec $P = X^{2n}$ donne.

$$2n\lambda^{2n} = -\frac{1}{2n}\sum_{k=1}^{2n} \frac{2\lambda^{2n}\omega_k}{(1-\omega_k)^2} - \frac{\lambda^{2n}}{2n}\sum_{k=1}^{2n} \frac{2\omega_k}{(1-\omega_k)^2} = -\frac{\lambda^{2n}}{n}\sum_{k=1}^{2n} \frac{2\omega_k}{(1-\omega_k)^2}$$

On en déduit que

$$\frac{1}{2n} \sum_{k=1}^{2n} \frac{2\omega_k}{(1-\omega_k)^2} = -n$$

ce qui permet, après multiplication par $P(\lambda)$ de réécrire le second terme de (II.2) et de conclure que

$$\forall \lambda \in \mathbb{C}, \quad \lambda P'(\lambda) = \frac{1}{2n} \sum_{k=1}^{2n} P(\lambda \omega_k) \frac{2\omega_k}{(1 - \omega_k)^2} + nP(\lambda)$$

12. Soit $f \in \mathcal{S}_n$. Il lui est associé une suite $(a_k)_{0 \le k \le n}$ et une suite $(b_k)_{1 \le k \le n}$. Avec les formules d'Euler, on a

$$f(t) = a_0 + \sum_{k=1}^{n} \left(\frac{a_k - ib_k}{2} e^{ikt} + \frac{a_k + ib_k}{2} e^{-ikt} \right)$$
$$= e^{-int} \left(a_0 e^{int} + \sum_{k=1}^{n} \left(\frac{a_k - ib_k}{2} e^{i(k+n)t} + \frac{a_k + ib_k}{2} e^{i(n-k)kt} \right) \right)$$

Si on pose

$$U(X) = a_0 X^n + \sum_{k=1}^n \left(\frac{a_k - ib_k}{2} X^{k+n} + \frac{a_k + ib_k}{2} X^{n-k} \right)$$

on obtient un élément de $\mathbb{C}_{2n}[X]$ tel que $f(t) = e^{-int}U(e^{it})$.

$$\exists U \in \mathbb{C}_{2n}[X], \ \forall \theta \in \mathbb{R}, f(\theta) = e^{-in\theta}U\left(e^{i\theta}\right)$$

13. On a $1 - \omega_k = e^{i\varphi_k/2}(e^{-i\varphi_k/2} - e^{i\varphi_k/2}) = -2ie^{i\varphi_k/2}\sin(\varphi_k/2)$ et ainsi

$$\frac{2\omega_k}{(1-\omega_k)^2} = \frac{2e^{i\varphi_k}}{-4e^{i\varphi_k}\sin(\varphi_k/2)^2} = \frac{-1}{2\sin(\varphi_k/2)^2}$$

Appliquons la question 11 au polynôme U. Avec l'expression ci-dessus, on obtient

$$\lambda U'(\lambda) = -\frac{1}{2n} \sum_{k=1}^{2n} U(\lambda \omega_k) \frac{1}{2\sin(\varphi_k/2)^2} + nU(\lambda)$$

En particulier, pour $\lambda=e^{it}$, on obtient (puisque $f'(t)=-inf(t)+ie^{-int}e^{it}U'(e^{it})$)

$$-ie^{int}(f'(t) + inf(t)) = -\frac{1}{2n} \sum_{k=1}^{2n} U\left(e^{i(t+\varphi_k)}\right) \frac{1}{2\sin(\varphi_k/2)^2} + nU(e^{it})$$
$$= -\frac{1}{2n} \sum_{k=1}^{2n} e^{in(t+\varphi_k)} f(t+\varphi_k) \frac{1}{2\sin(\varphi_k/2)^2} + ne^{int} f(t)$$

Comme $e^{in\varphi_k} = i(-1)^k$, on conclut que

$$-if'(t) = -\frac{1}{2n} \sum_{k=1}^{2n} i(-1)^k f(t+\varphi_k) \frac{1}{2\sin(\varphi_k/2)^2}$$

On a montré que

$$\forall \theta \in \mathbb{R}, \quad f'(\theta) = \frac{1}{2n} \sum_{k=1}^{2n} f(\theta + \varphi_k) \frac{(-1)^k}{2\sin(\varphi_k/2)^2}$$

14. D'après la question 11 avec P = 1, on a

$$\frac{1}{2n} \sum_{k=1}^{2n} \frac{2\omega_k}{(1-\omega_k)^2} = -n$$

et avec la question 13, on en déduit que

$$\frac{1}{2n} \sum_{k=1}^{2n} \frac{1}{2\sin(\varphi_k/2)^2} = n$$

Par inégalité triangulaire à partir de la question 13,

$$|f'(\theta)| \le \frac{1}{2n} \sum_{k=1}^{2n} ||f||_{L^{\infty}([-1,1])} \frac{1}{2\sin(\varphi_k/2)^2} = n||f||_{L^{\infty}([-1,1])}$$

$$|\forall \theta \in \mathbb{R}, \quad |f'(\theta)| \le n||f||_{L^{\infty}(\mathbb{R})}$$

I.C - Quelques conséquences de l'inégalité (I.4)

15. Soit $P \in \mathbb{C}_n[X]$. Posons $f: t \mapsto P(\cos(t))$. La question 3 nous indique que c'est un élément de \mathcal{S}_n et on peut donc lui appliquer la question 14. Mais on a

$$\forall t \in \mathbb{R}, \ f'(t) = -\sin(t)P'(\cos(t))$$

Si $x \in [-1,1]$, on applique ceci avec $t = \arccos(x)$. Comme $\sin(\arccos(x)) = \sqrt{1-x^2}$ (car $\sin(\theta) = \sqrt{1-\cos^2(\theta)}$ quand $\theta \in [0,\pi]$)

$$|-\sqrt{1-x^2}P'(x)| \le n||f||_{L^{\infty}(\mathbb{R})} \le nP_{L^{\infty}([-1,1])}$$

Le majorant est indépendant de x et ainsi

$$\forall P \in \mathbb{C}_n[X], \quad \forall x \in [-1, 1], \quad \left| P'(x)\sqrt{1 - x^2} \right| \leqslant n \|P\|_{L^{\infty}((-1, 1))}$$

16. Soit $Q \in \mathbb{C}_{n-1}[X]$. Posons $f : \theta \mapsto Q(\cos(\theta))\sin(\theta)$. On sait déjà que $Q(\cos(\theta)) \in \mathcal{S}_{n-1}$ et s'écrit donc comme combinaison de $\cos(k\theta)$ et $\sin(k\theta)$ pour $k \in [1, n-1]$ et d'une constante. Or,

$$\cos(k\theta)\sin(\theta) = \frac{1}{2}(\sin((k+1)\theta) - \sin((k-1)\theta))$$

$$\sin(k\theta)\sin(\theta) = -\frac{1}{2}(\cos((k+1)\theta) - \cos((k-1)\theta))$$

et $f(\theta)$ est donc combinaison de $\cos(j\theta)$ et $\sin(j\theta)$ pour $j \in [0,n]$ et de $\sin(\theta)$ (pour la constante multipliée par $\sin(\theta)$). C'est donc un élément de S_n . Comme $f'(\theta) = Q(\cos(\theta))\cos(\theta) - \sin^2(\theta)Q'(\cos(\theta))$, on a f'(1) = Q(1) ($\theta = 0$). Avec (I.4), on a donc

$$|Q(1)| \leq n ||f||_{L^{\infty}(\mathbb{R})}$$

Remarquons alors que

$$\forall \theta \in \mathbb{R}, |f(\theta)| = |Q(\cos(\theta))\sin(\theta)| = |Q(x)|\sqrt{1-x^2} \text{ avec } x = \cos(\theta)$$

et donc $|f(\theta)|$ est plus petit que la borne supérieure des $|Q(x)|\sqrt{1-x^2}$ pour $x \in [-1,1]$. Ainsi

$$|Q(1)| \le n \sup_{-1 \le x \le 1} |Q(x)\sqrt{1-x^2}|$$

17. Soit $R \in \mathbb{C}_{n-1}[X]$ et $t \in [-1, 1]$. Considérons $S_t(X) = R(tX) \in \mathbb{C}_{n-1}[X]$. La question précédente utilisée avec ce polynôme donne

$$|R(t)| \le n \sup_{-1 \le x \le 1} \left| R(tx) \sqrt{1 - x^2} \right|$$

Pour tout $x \in [-1, 1]$, on a $1 - x^2 \le 1 - t^2 x^2$ et donc $\sqrt{1 - x^2} \le \sqrt{1 - t^2 x^2}$. Ainsi

$$\forall x \in [-1, 1], \ \left| R(tx)\sqrt{1 - x^2} \right| \le \left| R(tx)\sqrt{1 - (tx)^2} \right| \le \sup_{-1 \le y \le 1} |R(y)\sqrt{1 - y^2}|$$

On a ainsi montré que

$$\sup_{-1 \leqslant x \leqslant 1} \left| R(tx) \sqrt{1 - x^2} \right| \le \sup_{-1 < y < 1} |R(y) \sqrt{1 - y^2}|$$

et on a donc

$$|R(t)| \leqslant n \sup_{-1 \leqslant x \leqslant 1} |R(x)\sqrt{1-x^2}|$$

18. Soit $P \in \mathbb{C}_n[X]$, on peut appliquer ce qui précède à $P' \in \mathbb{C}_{n-1}[X]$:

$$\forall t \in [-1, 1], |P'(t)| \le n \sup_{-1 \le x \le 1} |P'(x)\sqrt{1 - x^2}|$$

Avec la question 15, on a donc

$$\forall t \in [-1, 1], |P'(t)| \le n^2 ||P||_{L^{\infty}([-1, 1])}$$

et ainsi

$$||P'||_{L^{\infty}([-1,1])} \le n^2 ||P||_{L^{\infty}([-1,1])}$$

19. D'une part, on $||T_n||_{L^{\infty}([-1,1])} = 1$ (question 4). D'autre part, $||T'_n||_{L^{\infty}([-1,1])} = n^2$ (question 5). Ainsi,

L'inégalité est une égalité quand
$$P = T_n \in \mathbb{C}_n[X]$$

II Inégalités de Bernstein et transformée de Fourier

II.A - Transformée de Fourier d'une fonction

- 20. On utilise le théorème de continuité des intégrales à paramètres.
 - Pour tout $\xi \in \mathbb{R}$, la fonction $x \mapsto f(x)e^{-ix\xi}$ est continue sur \mathbb{R} .
 - Pour tout $x \in \mathbb{R}$, la fonction $\xi \mapsto f(x)e^{-ix\xi}$ est continue sur \mathbb{R} .
 - On a l'hypothèse de domination : $\forall x \in \mathbb{R}, \ \forall \xi \in \mathbb{R}, \ |f(x)e^{-ix\xi}| \leq |f(x)|$ et la fonction |f| est continue et intégrable sur \mathbb{R}

Ainsi, la fonction \hat{f} est définie continue sur \mathbb{R} .

$$\forall f \in L^1(\mathbb{R}), \ \hat{f} \in \mathcal{C}^0(\mathbb{R})$$

21. L'application $f\mapsto \hat{f}$ est linéaire (linéarité du passage à l'intégrale). Soit $f\in L^1(\mathbb{R})$. On a

$$\forall \xi \in \mathbb{R}, \ |\hat{f}(\xi)| \le \int_{\mathbb{R}} |f(x)e^{-ix\xi}| \ dx = ||f||_1$$

et donc $\widehat{f} \in L^{\infty}(\mathbb{R})$ avec

$$\|\hat{f}\|_{\infty} \le \|f\|_1$$

Ceci montre que l'application linéaire $f \mapsto \hat{f}$ est continue et même 1 lispchitzienne (pour les normes proposées).

$$f \mapsto \hat{f}$$
 est continue de $(L^1(\mathbb{R}), \|\cdot\|_1)$ dans $(L^{\infty}(\mathbb{R}), \|\cdot\|_{\infty})$

22. f étant continue, g l'est aussi. De plus, le changement de variable linéaire $u = \lambda x$ donne

$$\int_0^a |g(x)| \ dx = \frac{1}{\lambda} \int_0^{\lambda a} |f(u)| \ du$$

et cette quantité admet une limite finie quand $a \to +\infty$ et aussi quand $a \to -\infty$. Il y a donc intégrabilité aux voisinage des infinis et

$$g \in L^1(\mathbb{R})$$

On peut alors écire $\hat{g}(\xi)$ et le même changement de variable donne

$$\hat{g}(\xi) = \frac{1}{\lambda} \int_{-\infty}^{+\infty} f(u)e^{-i\xi u/\lambda} du$$

et ainsi

$$\hat{g}(\xi) = \frac{1}{\lambda} \hat{f}(\frac{\xi}{\lambda})$$

II.B - Produit de convolution

23. Soit $x \in \mathbb{R}$. La fonction $t \longmapsto f(t)g(x-t)$ est continue sur \mathbb{R} . On a

$$\forall t \in \mathbb{R}, |f(t)g(x-t)| \le |f(t)||g||_{\infty}$$

f étant intégrable sur \mathbb{R} , la fonction $t \mapsto f(t)g(x-t)$ l'est aussi, ce qui assure la définition de f * g sur \mathbb{R} .

Le changement de variable u = x - t donne immédiatement

$$\forall x \in \mathbb{R}, \quad (f * g)(x) = \int_{-\infty}^{+\infty} f(x - u)g(u) \ du = (g * f)(x)$$

24. L'inégalité de la question précédente entraine que

$$\forall x \in \mathbb{R}, |(f * g)(x)| \leq ||g||_{\infty} ||f||_{1}$$

et ainsi

$$|f * g$$
 est bornée et $||f * g||_{\infty} \leq ||f||_1 ||g||_{\infty}$

- 25. On utilise le théorème de régularité des intégrales à paramètres.
 - $\forall x \in \mathbb{R}, t \longmapsto f(t)g(x-t)$ est continue sur \mathbb{R} .
 - $\forall t \in \mathbb{R}, x \longmapsto f(t)g(x-t)$ est de classe \mathcal{C}^k sur \mathbb{R} de dérivée p-ième $x \longmapsto f(t)g^{(p)}(x-t)$.
 - $\forall x \in \mathbb{R}, t \longmapsto f(t)g^{(p)}(x-t)$ est continue sur \mathbb{R} .
 - $\forall x, t \in \mathbb{R}, \forall p \in [0, k], |f(t)g^{(p)}(x t)| \leq ||g^{(p)}||_{\infty}|f(t)|$ et ce majorant est intégrable sur \mathbb{R} . Le théorème s'applique et donne que f * g est de classe C^k avec

$$f(f * g)^{(k)} = f * (g^{(k)})$$

26. Par définition

$$\widehat{f * g}(\xi) = \int_{-\infty}^{+\infty} (f * g)(x)e^{-ix\xi} dx = \int_{-\infty}^{+\infty} \left(\int_{-\infty}^{+\infty} e^{-ix\xi} f(t)g(x-t) dt \right) dx$$

Avec le résultat admis,

$$\widehat{f * g}(\xi) = \int_{-\infty}^{+\infty} \left(\int_{-\infty}^{+\infty} e^{-ix\xi} f(t) g(x - t) \ dx \right) \ dt$$

On pose u = x - t dans l'intégrale intérieure :

$$\widehat{f * g}(\xi) = \int_{-\infty}^{+\infty} \left(\int_{-\infty}^{+\infty} e^{-i(u+t)\xi} f(t)g(u) \ du \right) \ dt$$

et on peut "faire sortir" de l'intégrale les termes indépendants de la variable u

$$\widehat{f * g}(\xi) = \int_{-\infty}^{+\infty} \left(f(t)e^{-it\xi} \int_{-\infty}^{+\infty} e^{-iu\xi} g(u) \ du \right) \ dt = \int_{-\infty}^{+\infty} f(t)e^{-it\xi} \widehat{g}(\xi) \ dt$$

Là encore $\hat{g}(\xi)$ peut sortir de l'intégrale et on obtient $\hat{f}(x)\hat{g}(x)$.

$$\widehat{f * g} = \widehat{f}\widehat{g}$$

II. C - Introduction d'une fonction plateau

27. φ est de classe \mathcal{C}^{∞} sur \mathbb{R}^{+*} par théorèmes d'opération. On prouve par récurrence que

$$\forall k \in \mathbb{N}, \exists P_k \in \mathbb{R}[X], \forall t > 0, \varphi^{(k)}(t) = P_k(1/t)e^{-1/t}$$

- C'est vrai au rang 0 avec $P_0 = 1$.
- Supposons le résultat vrai jusqu'à un rang $k \geq 0$. On peut alors redériver et obtenir

$$\forall t > 0, \ \varphi^{(k)}(t) = \left(-\frac{1}{t^2}P_k'(1/t) + \frac{1}{t^2}P_k(1/t)\right)e^{-1/t}$$

 $P_{k+1} = X^2(-P'_k + P_k)$ est un polynôme convenable au rang k+1.

 φ est aussi de classe \mathcal{C}^{∞} sur \mathbb{R}^{-*} à dérivée nulle. Par le théorème de limite de la dérivée, il suffit de montrer que toutes les dérivées ont une limite finie à droite et gauche en 0 et que ces limites sont égales pour conclure que f est de classe \mathcal{C}^{∞} sur \mathbb{R} . C'est le cas avec une limite nulle (évident à gauche et croissances comparées à droite).

$$\varphi$$
 est de classe \mathcal{C}^{∞} sur \mathbb{R}

28. On vérifie que

$$\forall t, \ \psi(t) = \varphi(1 - t^2)$$

En effet, si $|t| \ge 1$, $1 - t^2 \le 0$ et $\varphi(1 - t^2) = 0 = \psi(t)$ et si |t| < 1, $1 - t^2 > 0$ et $\varphi(1 - t^2) = e^{1/(t^2 - 1)} = \psi(t)$. Par théorèmes d'opération,

$$\psi \in \mathcal{C}^{\infty}$$

29. $\theta \in \mathcal{C}^{\infty}$ comme primitive d'une telle fonction. De plus θ' est nulle sur chaque intervalle $]-\infty, -1]$ et $[1, +\infty[$ et donc θ est constante sur chacun de ces intervalles.

8

$$\theta$$
 est constante sur $]-\infty,-1]$ et sur $[1,+\infty[$

Par théorème fondamental,

$$\theta(x) = \int_0^x \psi(t) \ dt$$

et les constantes sont

$$A = -\int_{-1}^{0} e^{\frac{1}{t^2-1}} dt$$
 et $B = \int_{0}^{1} e^{\frac{1}{t^2-1}} dt$

Dans les deux cas, on intègre une fonction continue positive non nulle et les intégrales sont > 0. Ainsi

et les constantes sont en particulier différentes.

30. Notons $h_1 = \frac{\psi - A}{B - A}$: c'est une fonction de classe C^{∞} sur \mathbb{R} , nulle sur $]-\infty, -1]$ et valant 1 sur $[1, +\infty[$.

 $h_1(2x+3)$ vaut 0 si $x \le -2$ et vaut 1 si $x \ge -1$.

Notons $h_2 = \frac{\psi - B}{A - B}$: c'est une fonction de classe \mathcal{C}^{∞} sur \mathbb{R} , nulle sur $[1, +\infty[$ et qui vaut 1 sur $]-\infty, -1]$.

 $h_2(2x-3)$ vaut 0 si $x \ge 2$ et vaut 1 si $x \ge 1$.

La fonction $\rho = h_1 h_2$ est nulle hors de]-2,2[et vaut 1 sur [-1,1].

Il existe $\rho \in \mathcal{C}^{\infty}(\mathbb{R})$, constante égale à 1 sur [-1,1] et constante égale à 0 sur $\mathbb{R}\setminus[-2,2]$

II.D -Inégalités de Bernstein

31. On remarque tout d'abord que

$$r(x) = \frac{1}{2\pi} \int_{-2}^{+2} e^{ix\xi} \rho(\xi) d\xi$$

On utilise le théorème de régularité des intégrales à paramètres.

- Pour tout $x, \, \xi \mapsto e^{ix\xi} \rho(\xi)$ est continue sur le segment et donc intégrable sur ce segment.
- Pour tout $\xi \in [-2,2]$, $x \mapsto e^{ix\xi}\rho(\xi)$ est de classe C^1 de dérivée $x \mapsto i\xi e^{ix\xi}\rho(\xi)$.
- Pour tout $x, \xi \mapsto i\xi e^{ix\xi} \rho(\xi)$ est continue.
- On a enfin, pour tout $x \in \mathbb{R}$ et $\xi \in [-2,2]$, $|i\xi e^{ix\xi}\rho(\xi)| \leq 2\|\rho\|_{\infty,[-2,2]}$ qui est intégrable sur le segment [-2,2].

$$r \in \mathcal{C}^1(\mathbb{R}) \text{ et } r'(x) = \frac{i}{2\pi} \int_{-\infty}^{+\infty} \xi e^{ix\xi} \rho(\xi) \ d\xi$$

32. Utilisons à nouveau l'expression ci-dessus de r. Par intégrations par parties (sur un segment) et comme ρ et toutes ses dérivées sont nulles en 2 et -2, on trouve

$$2\pi x^2 r(x) = i \int_{-2}^{+2} x e^{ix\xi} \rho'(\xi) \ d\xi = -\int_{-2}^{+2} e^{ix\xi} \rho''(\xi) \ d\xi$$

et ainsi

$$|x^2 r(x)| \le \frac{1}{2\pi} 4 \|\rho''\|_{L^{\infty}([-2,2])}$$

$$x \mapsto x^2 r(x)$$
 est bornée sur $\mathbb R$

r est continue sur \mathbb{R} et les seuls problèmes d'intégrabilité sont au voisinage des infinis. En notant M un majorant de $x^2r(x)$, on a $|r(x)| \leq M/x^2$ qui prouve cette intégrabilité par comparaison aux fonctions de Riemann.

$$r$$
 est intégrable sur \mathbb{R}

Enfin, on a $|r(x)| \leq \frac{2}{\pi} ||\rho||_{L^{\infty}([-2,2])}$ et

r est bornée sur \mathbb{R}

33. Commençons par le cas $\lambda = 1$. Les fonctions f et r vérifient les hypothèses de la question 26 et on a donc $\widehat{f * r} = \hat{f}\hat{r}$.

Par ailleurs, le second résultat d'inversion de Fourier donne $\rho = \hat{r}$ et \hat{r} est donc égale à 1 sur [-1,1].

Ainsi, $\hat{f}\hat{r}$ est égale à \hat{f} sur [-1,1] mais cela est aussi vrai ailleurs (où il y a nullité).

On a donc $\widehat{f*r} = \widehat{f}\widehat{r} = \widehat{f}$ et donc f*r = f par formule d'inversion de Fourier.

Pour un $\lambda > 0$ quelconque, on remarque que (changement de variable $u = \lambda t$)

$$f * r_{\lambda}(x) = \int_{-\infty}^{+\infty} f(x - t)r(\lambda t) dt = \frac{1}{\lambda} \int_{-\infty}^{+\infty} f(x - \frac{u}{\lambda})r(u) du = \frac{1}{\lambda} (f_{1/\lambda} * r)(\lambda x)$$

Or, $\widehat{f_{1/\lambda}}(x) = \lambda \widehat{f}(\lambda x)$ est nulle en dehors du segment [-1,1], intégrable sur \mathbb{R} et $f_{1/\lambda} \in L^1(\mathbb{R}) \cap \mathcal{C}^1(\mathbb{R})$. On peut donc, avec le premier cas, affirmer que $f_{1/\lambda} * r = f_{1/\lambda}$. Ainsi

$$f * r_{\lambda}(x) = \frac{1}{\lambda} f_{1/\lambda}(\lambda x) = \frac{1}{\lambda} f(x)$$

$$\boxed{f = \lambda f * r_{\lambda}}$$

34. La question 25 donne alors en dérivant (r et sa dérivée sont bornées) $f' = \lambda f * (r_{\lambda})'$ et la question 24 indique que

$$||f'||_{\infty} \le \lambda ||f||_{\infty} ||(r_{\lambda})'||_{1}$$

Il suffit alors de remarquer que

$$\int_{-\infty}^{\infty} |(r_{\lambda})'(x)| \ dx = \int_{-\infty}^{\infty} |\lambda r'(\lambda x)| \ dx = \int_{-\infty}^{+\infty} |r'(u)| \ du$$

pour conclure que

$$||f'||_{\infty} \le \lambda ||f||_{\infty} ||r'||_1$$