${\rm CH08}:$ Réduction des endomorphismes - aspects géométriques

CH08 : Réduction des endomorphismes - aspects géométriques

Table des matières

Ι	Sous-	espaces stables par un endomorphisme
	1)	Définition
	2)	Matrice dans une base adaptée à un sous-espace stable
II	Eléme	ents propres d'un endomorphisme
	1)	Vecteurs propres, valeurs propres
	2)	Sous-espaces propres
	3)	Polynôme caractéristique d'un endomorphisme
	4)	Eléments propres d'une matrice carrée
	5)	Multiplicité d'une valeur propre
III	Endo	morphismes/matrices diagonalisables
	1)	Définition
	2)	Théorème de diagonalisation
	3)	Cas des projecteurs et symétries
	4)	Cas où χ_u est scindé à racines simples
II III IV	Endo	morphismes/matrices trigonalisables
	1)	Définition
	2)	Théorème de trigonalisation et conséquences
	3)	Expressions de la trace et du déterminant
	4)	Trigonalisation en dimension 2
	5)	Trigonalisation en dimension 3
		a) Trigonalisation avec une valeur propre simple et une double 28
		b) Trigonalisation avec une valeur propre triple
V	Endo	morphismes/matrices nilpotents

Dans tout ce cours, \mathbb{K} désigne un sous-corps de \mathbb{C} (un tel corps contient nécessairement \mathbb{Q} , et on aura très souvent $\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$), et E un \mathbb{K} -espace vectoriel non nul.

Etant donné un endomorphisme $u \in \mathcal{L}(E)$, on peut se demander (lorsque E est de dimension finie) s'il existe une base de E dans laquelle u se représente par une matrice "simple", par exemple diagonale, ou triangulaire, ou diagonale par blocs. La détermination d'une telle base est appelée la **réduction** de l'endomorphisme u.

I Sous-espaces stables par un endomorphisme

1) Définition

Définition 1 (Sous-espace stable par un endomorphisme)

Soit $u \in \mathcal{L}(E)$, et soit F un sous-espace vectoriel de E. On dit que F est stable par u lorsque $u(F) \subset F$, c'est-à-dire $(x \in F \implies u(x) \in F)$.

Exemple

Soit $u: \mathbb{K}[X] \to \mathbb{K}[X]$ l'endomorphisme de dérivation u(P) = P'.

Alors, pour tout entier $n \in \mathbb{N}$, le sous-espace $\mathbb{K}_n[X]$ est stable par u.

En effet, u(1) = 0 et pour tout $n \in \mathbb{N}^*$, $u(X^n) = nX^{n-1}$, donc, par linéarité de u,

$$\begin{cases} u(\mathbb{K}_0[X]) = \{0_{\mathbb{K}[X]}\} \subset \mathbb{K}_0[X] \\ \forall n \in \mathbb{N}^*, \quad u(\mathbb{K}_n[X]) \subset \mathbb{K}_{n-1}[X] \subset \mathbb{K}_n[X] \end{cases} .$$

Définition 2 (Endomorphisme induit sur un sous-espace stable)

Soit $u \in \mathcal{L}(E)$ et soit F un sous-espace vectoriel de E stable par u.

Alors, l'application $u_F: \left\{ \begin{array}{ccc} F & \longrightarrow & F \\ x & \longmapsto & u(x) \end{array} \right.$ est bien définie et c'est un endomorphisme de F.

On dit que u_F est l'endomorphisme induit par u sur F.

Prouvo

A priori, la restriction de u à F est une application $u_{|_F}: F \to E$. Vu que $u(F) \subset F$, on a $u_F: F \to F$ qui est bien définie $(x \in F \implies u_F(x) = u(x) \in F)$. Enfin, la linéarité de $u_{|_F}$, donc celle de u_F , résulte de celle de u.

ATTENTION!

Si F n'est pas stable par u, ça ne marche pas! On peut seulement dire que la restriction $u_{|F}$ est une application linéaire de F dans E.

Bien saisir la différence de notation entre $u_{|_F}: F \to E$ et $u_F: F \to F$.

2) Matrice dans une base adaptée à un sous-espace stable

Propriété 3 (Traduction matricielle d'un sous-espace stable)

On suppose E de dimension finie, notée $n \in \mathbb{N}^*$. Soit $u \in \mathcal{L}(E)$ et soit F un sous-espace vectoriel de E. On considère $\mathcal{B}_F = (e_1, \dots, e_k)$ une base de F que l'on complète en une base $\mathcal{B} = (e_1, \dots, e_k, e_{k+1}, \dots, e_n)$ de E.

Alors, F est stable par u si et seulement si la matrice de u dans la base $\mathcal B$ est de la forme suivante :

$$Mat_{\mathcal{B}}(u) = \left(\begin{array}{cc} A_1 & A_2 \\ 0 & A_3 \end{array} \right),$$

avec $A_1 \in \mathcal{M}_k(\mathbb{K})$. Dans ce cas, A_1 est la matrice de u_F dans la base \mathcal{B}_F .

Preuve

Si F est stable par u, alors pour tout $1 \le i \le k$, le vecteur e_i est dans F, donc son image $u(e_i)$ aussi. On a donc $u(e_i) \in Vect(e_1, \dots, e_k)$, c'est-à-dire que pour i compris entre 1 et k, les vecteurs $u(e_i)$ ont des coordonnées nulles suivant e_{k+1}, \dots, e_n , et cela explique la forme de la matrice (dans les k

premières colonnes, les coefficients sous la k^e ligne sont nuls).

Réciproquement : si $Mat_{\mathcal{B}}(u)$ est de la forme annoncée, alors par lecture des k premières colonnes, on obtient que pour tout $1 \le i \le k$:

$$u(e_i) \in Vect(e_1, \cdots, e_k) = F,$$

donc par linéarité de u, on en déduit $u(F) \subset F$.

Enfin, les colonnes de A_1 sont les coordonnées des vecteurs $u(e_i) = u_F(e_i)$ (pour $1 \le i \le k$) dans la base (e_1, \dots, e_k) du sev F, donc $A_1 = Mat_{\mathcal{B}_F}(u_F)$.

Exemple

Exemple On considère f l'endomorphisme de \mathbb{R}^3 canoniquement associé à $M=\begin{pmatrix} 1 & 1 & 0 \\ -1 & 2 & 1 \\ 1 & 0 & 1 \end{pmatrix}$.

On note $\mathcal{B} = (\overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3})$ la base canonique de \mathbb{R}^3 et $\mathcal{P} = \{(x, y, z) \in \mathbb{R}^3, \ y + z = 0\}$

- 1. Déterminer une base $(\overrightarrow{u}, \overrightarrow{v})$ de \mathcal{P} .
- 2. Montrer que \mathcal{P} est stable par f.
- 3. On pose $\overrightarrow{w_1} = (0;0;1)$. Montrer que $\mathcal{B}_1 = (\overrightarrow{u},\overrightarrow{v},\overrightarrow{w_1})$ est une base de \mathbb{R}^3 et déterminer $M_1 =$
- 4. On pose $\overrightarrow{w_2} = (1;1;1)$. Montrer que $\mathcal{B}_2 = (\overrightarrow{u},\overrightarrow{v},\overrightarrow{w_2})$ est une base de \mathbb{R}^3 et déterminer $M_2 =$ $Mat_{\mathcal{B}_2}(f)$. Interpréter la forme de M_2 .

Solution:

- 1. On a $\mathcal{P} = Vect((1,0,0),(0,1,-1))$. On pose $\vec{u} = (1,0,0)$ et $\vec{v} = (0,1,-1)$. La famille (\vec{u}, \vec{v}) est génératrice de \mathcal{P} et libre (deux vecteurs non proportionnels) donc c'est une base de \mathcal{P} .
- 2. Montrons que le plan \mathcal{P} est stable par f.

Comme nous disposons d'une base de \mathcal{P} il suffit ici de montrer que $f(\vec{u}) \in \mathcal{P}$ et $f(\vec{v}) \in \mathcal{P}$.

Or,
$$M\begin{pmatrix} 1\\0\\0 \end{pmatrix} = \begin{pmatrix} 1\\-1\\1 \end{pmatrix}$$
 donc $f(\vec{u}) = (1, -1, 1) \in \mathcal{P}$.

De plus, $M\begin{pmatrix} 0\\1\\-1 \end{pmatrix} = \begin{pmatrix} 1\\1\\-1 \end{pmatrix}$ donc $f(\vec{v}) = (1, 1, -1) \in \mathcal{P}$.

Ainsi, \mathcal{P} est stable par f.

3. Déterminons la matrice de f dans la base $(\vec{u}, \vec{v}, \vec{w_1})$.

Nous avons déjà calculé $f(\vec{u})$ et $f(\vec{v})$. Il nous manque $f(\vec{v_1})$.

Or,
$$M \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$
 donc $f(\vec{w_1}) = (0, 1, 1) = \overrightarrow{v} + 2\overrightarrow{w_1}$.

$$f(\vec{u}) = (1, -1, 1) = 1\vec{u} + (-1)\vec{v} + 0\vec{w_1}$$

En résumé : $f(\vec{v}) = (1, 1, -1) = 1\vec{u} + 1\vec{v} + 0\vec{w_1}$
 $f(\vec{w_1}) = (0, 1, 1) = 0\vec{u} + 1\vec{v} + 2\vec{w_1}$

Donc
$$M_1 = Mat_{(\vec{u}, \vec{v}, \vec{w_1})}(f) = \begin{pmatrix} 1 & 1 & 0 \\ -1 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$
.

4. Déterminons la matrice de f dans la base $(\vec{u}, \vec{v}, \vec{w_2})$.

Nous avons déjà calculé $f(\vec{u})$ et $f(\vec{v})$. Il nous manque $f(\vec{v_2})$.

Or,
$$M\begin{pmatrix} 1\\1\\1 \end{pmatrix} = \begin{pmatrix} 2\\2\\2 \end{pmatrix}$$
 donc $f(\vec{w_2}) = (2,2,2)$.

$$f(\vec{u}) = (1, -1, 1) = 1\vec{u} + (-1)\vec{v} + 0\vec{w_2}$$
 En résumé :
$$f(\vec{v}) = (1, 1, -1) = 1\vec{u} + 1\vec{v} + 0\vec{w_2}$$

$$f(\vec{w_2}) = (2, 2, 2) = 0\vec{u} + 0\vec{v} + 2\vec{w_2}$$

Donc
$$M_2 = Mat_{(\vec{u}, \vec{v}, \vec{w_2})}(f) = \begin{pmatrix} 1 & 1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$
.

Interprétation : La forme de M_2 (en deux blocs) indique que le plan $\mathcal{P} = Vect(\overrightarrow{u}, \overrightarrow{v})$ est stable par f, mais aussi la droite $\mathcal{D} = Vect(\overrightarrow{w}_2)$. On a donc une décomposition de l'espace en deux sous-espaces stables par f:

$$\mathbb{R}^3 = \mathcal{P} \oplus \mathcal{D}$$
,

et en notant $f_{\mathcal{P}}$ et $f_{\mathcal{D}}$ les endomorphismes induits par f sur ces deux sev stables, on a

$$Mat_{(\overrightarrow{u},\overrightarrow{v})}(f_{\mathcal{P}}) = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}, \qquad Mat_{(\overrightarrow{w_2})}(f_{\mathcal{D}}) = \begin{pmatrix} 2 \end{pmatrix}.$$

Remarque

Il faut aussi être capable de reconnaître un sous-espace stable à partir de la forme de la matrice d'un endomorphisme.

Exemple

On considère u l'endomorphisme de $\mathbb{R}_3[X]$ canoniquement associé à la matrice :

$$A = \left(\begin{array}{cccc} 1 & 0 & 0 & -1 \\ 0 & 2 & 3 & 4 \\ -2 & -1 & -1 & 0 \\ 2 & 0 & 0 & 3 \end{array}\right).$$

Déterminer sans calculs un sev de E stable par u.

Solution: Uniquement avec la forme de la matrice, on peut affirmer que $F = Vect(X, X^2)$ est un sous-espace stable par u.

En effet, la lecture des colonnes de A dit que :

$$\begin{cases} u(1) = 1 - 2X^2 + 2X^3 \\ u(X) = 2X - X^2 \\ u(X^2) = 3X - X^2 \\ u(X^3) = -1 + 4X + 3X^3 \end{cases}$$

Donc on a bien $u(X) \in F$ et $u(X^2) \in F$, et comme (X, X^2) est une base de F on peut affirmer que $u(F) \subset F$.

II Eléments propres d'un endomorphisme

Dans la suite, on fixe un endomorphisme $u \in \mathcal{L}(E)$.

1) Vecteurs propres, valeurs propres

Définition 4 (Vecteurs propres, valeurs propres)

- (i) On dit que $x \in E$ est un vecteur propre de u lorsque $x \neq 0_E$ et $\exists \lambda \in \mathbb{K}$, $u(x) = \lambda x$ (i.e. x est non nul et u(x) est colinéaire à x).
- (ii) On dit que $\lambda \in \mathbb{K}$ est une valeur propre de u lorsqu'il existe $x \in E$ tel que $x \neq 0_E$ et $u(x) = \lambda x$.

Vocabulaire

Lorsque $u(x) = \lambda x$ avec x non nul, on dit que (λ, x) est un **couple valeur propre**/vecteur propre. On dit aussi que x et λ sont **associés**.

L'équation $u(x) = \lambda x$, d'inconnue $(\lambda, x) \in \mathbb{K} \times (E \setminus \{0\})$, est appelée **équation aux éléments propres** de u.

ATTENTION!

Un vecteur propre n'est pas nul par convention, mais une valeur propre peut-être nulle.

Remarque

- Si x est un vecteur propre de u, alors il est associé à une unique valeur propre. En effet, si $u(x) = \lambda x = \mu x$ avec $x \neq 0_E$, alors $(\lambda \mu)x = 0_E$, et donc $\lambda \mu = 0$ (puisque $x \neq 0_E$).
- En revanche, si λ est une valeur propre de u, alors il existe une infinité de vecteurs propres associés à λ . En effet, si $u(x) = \lambda x$ avec $x \neq 0_E$, alors pour tout $\alpha \in \mathbb{K}^*$, on a $u(\alpha x) = \alpha u(x) = \alpha(\lambda x) = \lambda(\alpha x)$, donc αx (qui est non nul) est aussi un vecteur propre associé à λ .

Propriété 5 (Caractérisation des valeurs propres)

Soit $\lambda \in \mathbb{K}$. On a les équivalences :

$$\lambda \ est \ valeur \ propre \ de \ u \iff Ker(u - \lambda Id_E) \neq \{0_E\}$$

 $\iff u - \lambda Id_E \ non \ injective.$

Dans ce cas, les vecteurs propres associés à λ sont les éléments non nuls de $Ker(u - \lambda Id_E)$.

Preuve

Pour tout $x \in E$ et pour tout $\lambda \in \mathbb{K}$, on a

$$u(x) = \lambda x \iff u(x) - \lambda Id_E(x) = 0_E \iff (u - \lambda Id_E)(x) = 0_E \iff x \in Ker(u - \lambda Id_E),$$

donc:

$$\lambda$$
 valeur propre de $u \iff \exists x \in Ker(u - \lambda Id_E), \ x \neq 0_E$.

La deuxième équivalence résulte du fait qu'un endomorphisme est injectif si et seulement si son noyau est nul.

Propriété 6 (Vecteur propre et droite stable)

Soit $x \in E$ un vecteur **non nul**. On a l'équivalence :

x est vecteur propre de $u \iff la$ droite $\mathcal{D} = Vect(x)$ est stable par u.

Preuve

 \Longrightarrow Si x est un vecteur propre de u, alors il existe $\lambda \in \mathbb{K}$ tel que $u(x) = \lambda x$. En notant $\mathcal{D} = Vect(x)$, montrons alors que $u(\mathcal{D}) \subset \mathcal{D}$. Si $y \in \mathcal{D}$, alors il existe $\alpha \in \mathbb{K}$ tel que $y = \alpha x$. Donc

$$u(y) = u(\alpha x) = \alpha u(x) = \alpha(\lambda x) = (\alpha \lambda)x,$$

ce qui montre que $u(y) \in Vect(x) = \mathcal{D}$.

 \iff Si $\mathcal{D} = Vect(x)$ est stable par u, alors $u(x) \in \mathcal{D}$, puisque $x \in \mathcal{D}$. Cela signifie qu'il existe $\lambda \in \mathbb{K}$ tel que $u(x) = \lambda x$, et donc x est vecteur propre de u.

2) Sous-espaces propres

Définition 7 (Sous-espace propre d'un endomorphisme)

Soit $\lambda \in \mathbb{K}$ une valeur propre de $u \in \mathcal{L}(E)$.

On appelle sous-espace propre associé à λ l'ensemble $E_{\lambda}(u) = Ker(u - \lambda Id_E)$.

C'est un sous-espace vectoriel non nul de E.

Remarque

On $a E_{\lambda}(u) = \{x \in E, (u - \lambda I d_E)(x) = 0_E\} = \{x \in E, u(x) = \lambda x\}$: cet ensemble est donc formé des vecteurs propres de u associés à λ ainsi que du vecteur nul.

Exemple

- Si 0 est valeur propre de u, alors le sous-espace propre associé à $\lambda = 0$ est $E_0(u) = Ker(u)$.
- Si 1 est valeur propre de u, alors le sous-espace propre associé à $\lambda = 1$ est $E_1(u) = Ker(u Id_E) =$ $\{x \in E, \ u(x) = x\}$. C'est l'ensemble des vecteurs invariants par u ("points fixes de u").

Exemple (Valeurs propres d'une homothétie vectorielle)

Soit $u = \alpha Id_E$ avec $\alpha \in \mathbb{K}$. Calculons les valeurs propres et sous-espaces propres de u. Pour les déterminer, procédons par analyse-synthèse :

- Analyse : si λ est valeur propre de l'homothétie $u = \alpha Id_E$, alors notons $x \neq 0_E$ un vecteur propre associé. On a $u(x) = \lambda x$, mais aussi $u(x) = (\alpha I d_E)(x) = \alpha x$, donc $(\lambda - \alpha)x = 0_E$, ce qui conduit à $\lambda = \alpha$ puisque le vecteur x est non nul. Ceci montre que u possède au plus une valeur propre : le scalaire α .
- Synthèse : le scalaire α est effectivement une valeur propre de u, puisque tous les vecteurs x non nuls sont vecteurs propres associés (vu que $u(x) = \alpha x$ pour tout $x \in E$).

Finalement, $u = \alpha I d_E$ possède une seule valeur propre : $\lambda = \alpha$, et le sous-espace propre associé est $E_{\alpha}(u) = Ker(u - \alpha Id_E) = Ker(0_{\mathcal{L}(E)}) = E.$

Exemple (Valeurs propres de la dérivation)

Soit $E = C^{\infty}(\mathbb{R}, \mathbb{R})$, et soit $u : E \to E$ l'endomorphisme défini par u(y) = y'. Calculons les valeurs propres et sous-espaces propres de u.

- Tout réel λ est valeur propre de u: en effet, pour tout $\lambda \in \mathbb{R}$, l'équation $u(y) = \lambda y$ possède des solutions non nulles, puisqu'il s'agit de l'équation différentielle $y' = \lambda y$, dont les solutions sont les fonctions $y : x \mapsto Ae^{\lambda x}$ avec $A \in \mathbb{R}$. Les vecteurs propres associés à λ sont les fonctions $y: x \mapsto Ae^{\lambda x}$ avec $A \in \mathbb{R}^*$.
- Pour tout $\lambda \in \mathbb{R}$, le sous-espace propre associé est $E_{\lambda}(u) = Vect(x \mapsto e^{\lambda x})$. Les sous-espaces propres de u sont donc des droites (ils sont tous de dimension 1).

Voici donc un exemple d'endomorphisme qui possède une infinité de valeurs propres (mais ceci n'est possible qu'en dimension infinie...).

Théorème 8 (Indépendance linéaire des sous-espaces propres)

Soit $\lambda_1, \dots, \lambda_p \in \mathbb{K}$ (avec $p \geq 2$) des valeurs propres distinctes de u. Alors :

(i) les sous-espaces propres
$$E_{\lambda_i}(u)$$
 sont en somme directe, i.e. :
$$\sum_{i=1}^p E_{\lambda_i}(u) = \bigoplus_{i=1}^p E_{\lambda_i}(u) ;$$

(ii) si x_1, \cdots, x_p sont des vecteurs propres respectivement associés aux valeurs propres $\lambda_1, \dots, \lambda_p$, alors la famille (x_1, \dots, x_p) est libre.

ATTENTION!

Bien sûr, on a $\bigoplus_{i=1}^n E_{\lambda_i}(u) \subset E$, mais cette inclusion peut être stricte.

En général, les sous-espaces propres de u ne sont donc pas supplémentaires dans E.

Preuve

- (i) Récurrence sur le nombre p de sous-espaces propres considérés.
 - La propriété est vraie pour p=2: en effet, si on considère deux valeurs propres $\lambda_1 \neq \lambda_2$, alors:

$$x \in E_{\lambda_1}(u) \cap E_{\lambda_2}(u) \Longrightarrow u(x) = \lambda_1 x = \lambda_2 x \Longrightarrow \underbrace{(\lambda_1 - \lambda_2)}_{\neq 0} x = 0_2 \Longrightarrow x = 0_E.$$

Donc $E_{\lambda_1}(u) \cap E_{\lambda_2}(u) = \{0_E\}$, ce qui montre que

$$E_{\lambda_1}(u) + E_{\lambda_2}(u) = E_{\lambda_1}(u) \oplus E_{\lambda_2}(u).$$

• Soit $p \ge 2$. On suppose que la propriété est vraie pour p sous-espaces propres. Montrons la pour p+1 sous-espaces propres : soit $(\lambda_1, \dots, \lambda_{p+1})$ p+1 valeurs propres distinctes de u. Montrons que la somme $\sum_{i=1}^p E_{\lambda_i}(u)$ est directe. Pour cela, on suppose :

$$x_1 + \dots + x_p + x_{p+1} = 0_E$$
,

avec $\forall i \in \{1, \dots, p+1\}, x_i \in E_{\lambda_i}(u)$.

En appliquant u et en utilisant que $u(x_i) = \lambda_i x_i$ pour chaque i, on obtient par linéarité :

$$u(x_1) + \dots + u(x_p) + u(x_{p+1}) = u(0_E),$$

c'est-à-dire

$$\lambda_1 x_1 + \dots + \lambda_p x_p + \lambda_{p+1} x_{p+1} = 0_E.$$

Vu que $x_{p+1} = -(x_1 + \cdots + x_p)$, ceci se réécrit

$$\underbrace{(\lambda_1 - \lambda_{p+1})x_1}_{\in E_{\lambda_1}(u)} + \dots + \underbrace{(\lambda_p - \lambda_{p+1})x_p}_{\in E_{\lambda_p}(u)} = 0_E.$$

Par hypothèse, la somme $\sum\limits_{i=1}^p E_{\lambda_i}(u)$ est directe, donc cette somme nulle entraı̂ne :

$$\forall i \in \{1, \dots, p\}, \quad (\lambda_i - \lambda_{p+1})x_i = 0_E,$$

donc (puisque $\lambda_i - \lambda_{p+1} \neq 0$ pour tout $i \in \{1, \dots, p\}$) : $x_1 = \dots = x_p = 0_E$. Il s'ensuit $x_{p+1} = -(x_1 + \dots + x_p) = 0_E$.

Ceci montre que la propriété est héréditaire.

(ii) Si $\alpha_1 x_1 + \cdots + \alpha_p x_p = 0_E$ avec chaque $\alpha_i \in \mathbb{K}$ et chaque x_i un vecteur propre associé à λ_i , alors en posant $y_i = \alpha_i x_i$ pour tout i, on a

$$y_1 + \dots + y_p = 0_E,$$

avec chaque $y_i \in E_{\lambda_i}(u)$, donc puisque la somme $\sum_{i=1}^p E_{\lambda_i}(u)$ est directe d'après (i), on en déduit que $y_i = 0_E$, c'est-à-dire $\alpha_i x_i = 0_E$ pour tout i. Mais les x_i sont non nuls (vecteurs propres), donc on a $\alpha_i = 0$ pour tout i, ce qui montre que la famille (x_1, \dots, x_p) est libre.

Théorème 9 (Stabilité d'un sous-espace propre)

Soit u et v deux endomorphismes de E qui commutent : $u \circ v = v \circ u$.

Alors, tout sous-espace propre de u est stable par v.

En particulier, tout sous-espace propre de u est stable par u.

Preuve

Soit λ une valeur propre de u, et $E_{\lambda}(u)$ le sous-espace propre associé. Si $x \in E_{\lambda}(u)$, alors $u(x) = \lambda x$, donc

$$u(v(x)) = v(u(x)) = v(\lambda x) = \lambda v(x),$$

ce qui montre que $v(x) \in Ker(u - \lambda Id_E) = E_{\lambda}(u)$. Donc $v(E_{\lambda}(u)) \subset E_{\lambda}(u)$.

Remarque

Ce résultat est utile dans de nombreuses situations (voir les exercices).

3) Polynôme caractéristique d'un endomorphisme

En dimension finie, on dispose d'une caractérisation simple des valeurs propres, grâce au déterminant. Dans toute la suite, **on suppose que** *E* **est de dimension finie**, et on note

$$n = \dim(E) \in \mathbb{N}^*$$
.

u désigne toujours un endomorphisme de E.

Propriété 10 (Caractérisation des valeurs propres à l'aide du det)

Soit $\lambda \in \mathbb{K}$, alors on a l'équivalence :

$$\lambda$$
 est une valeur propre de $u \iff \det(\lambda Id_E - u) = 0$.

Preuve

On a vu que : λ valeur propre de $u \iff u - \lambda Id_E$ non injective. Vu qu'ici E est de dimension finie, on a l'équivalence

$$u - \lambda I d_E$$
 non injective $\iff u - \lambda I d_E$ non bijective

(en dimension finie, un endomorphisme est bijectif ssi il est injectif). Donc

$$\lambda$$
 valeur propre de $u \iff \det(u - \lambda I d_E) = 0$

(rappelons qu'un endomorphisme est bijectif ssi son déterminant est non nul). Enfin, on a $\det(\lambda Id_E - u) = (-1)^n \det(u - \lambda Id_E)$, ce qui montre l'équivalence voulue.

Propriété 11 (Structure polynomiale de $det(\lambda Id_E - u)$)

La fonction $\lambda \mapsto \det(\lambda Id_E - u)$ est polynomiale de degré $n = \dim(E)$, avec

$$\forall \lambda \in \mathbb{K}, \quad \det(\lambda Id_E - u) = \lambda^n - tr(u)\lambda^{n-1} + \dots + (-1)^n \det(u).$$

Preuve

Fixons une base \mathcal{B} de E et notons $A = (a_{i,j})_{1 \leq i,j \leq n} = Mat_{\mathcal{B}}(u)$. Alors, par définition du déterminant d'un endomorphisme :

$$\det(\lambda I d_E - u) = \det(\lambda I_n - A) = \begin{vmatrix} \lambda - a_{1,1} & -a_{1,2} & \cdots & -a_{1,n} \\ -a_{2,1} & \lambda - a_{2,2} & \cdots & -a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ -a_{n,1} & -a_{n,2} & \cdots & \lambda - a_{n,n} \end{vmatrix} = \sum_{\sigma \in S_n} \varepsilon(\sigma) \prod_{i=1}^n \left(\lambda \delta_{i,\sigma(i)} - a_{i,\sigma(i)} \right),$$

où $\delta_{i,j} = 1$ si i = j et 0 sinon (symbole de Kronecker).

En séparant le terme correspondant à $\sigma = Id_{\{1,\dots,n\}}$, on obtient :

$$\det(\lambda I d_E - u) = \prod_{i=1}^n (\lambda - a_{i,i}) + Q(\lambda),$$

οù

$$Q(\lambda) = \sum_{\sigma \in S_n, \sigma \neq Id} \varepsilon(\sigma) \prod_{i=1}^n \left(\lambda \delta_{i,\sigma(i)} - a_{i,\sigma(i)} \right).$$

- Le terme $\prod_{i=1}^{n} (\lambda a_{i,i})$ est un polynôme de degré n en λ , dont le coefficient de λ^n vaut 1 et le coefficient de λ^{n-1} vaut $-\sum_{i=1}^{n} a_{i,i} = -tr(A) = -tr(u)$.
- Etudions le terme $Q(\lambda)$. Si $\sigma \neq Id_{\{1,\cdots,n\}}$, alors il existe i tel que $\sigma(i) \neq i$, donc par injectivité de σ , on a aussi $\sigma(\sigma(i)) \neq \sigma(i)$. Les entiers distincts i et $\sigma(i)$ ne sont donc pas des points fixes de σ , ce qui montre que σ possède au plus n-2 points fixes. On en déduit que pour toute permutation $\sigma \neq Id$, le produit $\prod_{i=1}^{n} (\lambda \delta_{i,\sigma(i)} - a_{i,\sigma(i)})$ possède au plus n-2 facteurs de la forme $(\lambda - a_{i,i})$, les autres ne dépendent pas de λ . Donc $\lambda \mapsto Q(\lambda)$ est polynomiale de degré $\leq n-2$.
- Par somme $\det(\lambda Id_E-u)$ est bien un polynôme de degré n, et

$$\forall \lambda \in \mathbb{K}, \quad \det(\lambda Id_E - u) = \lambda^n - tr(u)\lambda^{n-1} + \dots + \beta_0,$$

et en évaluant en $\lambda = 0$: $\beta_0 = \det(-u) = (-1)^n \det(u)$.

Définition 12 (Polynôme caractéristique d'un endomorphisme)

Soit $u \in \mathcal{L}(E)$. On appelle **polynôme caractéristique** de u le polynôme :

$$\chi_u(X) = \det(XId_E - u) \in \mathbb{K}[X].$$

Remarque

On $a \operatorname{deg}(\chi_u) = n = \dim(E)$ et χ_u est unitaire.

On dispose alors du théorème suivant :

Théorème 13 (Interprétation des valeurs propres comme racines)

Soit $u \in \mathcal{L}(E)$, avec E de dimension $n \in \mathbb{N}^*$.

(i) Les valeurs propres de u sont exactement les racines dans K de son polynôme caractéristique:

$$\forall \lambda \in \mathbb{K}, \quad (\lambda \text{ valeur propre de } u \iff \chi_u(\lambda) = 0).$$

(ii) u possède au plus n valeurs propres.

Preuve

D'après la proposition 10, λ est une valeur propre de u si et seulement si $\det(\lambda Id_E - u) = 0$, c'est-à-dire $\chi_u(\lambda) = 0$. Enfin, χ_u étant un polynôme de $\mathbb{K}[X]$ de degré n, il possède au plus n racines dans \mathbb{K} . Donc u possède au plus n valeurs propres.

Définition 14 (Spectre d'un endomorphisme)

On appellera spectre de u (noté Sp(u)) l'ensemble des $\lambda \in \mathbb{K}$ qui sont valeurs propres de u.

Remarque

- Le spectre de u est une partie finie de \mathbb{K} , de cardinal inférieur ou égal à n.
- Le nombre de sous-espaces propres de u est donc limité par la dimension de E.
- $Si \mathbb{K} = \mathbb{R}$, il est possible que u ne possède aucune valeur propre (si par exemple $\chi_u(X) = X^2 + 1$, sans racine réelle).
- $Si \mathbb{K} = \mathbb{C}$, alors u possède toujours au moins une valeur propre. En effet, son polynôme caractéristique est dans $\mathbb{C}[X]$, il possède donc au moins une racine complexe (théorème de d'Alembert-Gaüss).

Exemple

Déterminer les valeur propres et les sous-espaces propres de l'endomorphisme $u \in \mathcal{L}(\mathbb{R}^3)$ défini par

$$u(x, y, z) = (2x + 4z, 3x - 4y + 12z, x - 2y + 5z).$$

Solution:

Solution : La matrice de u dans la base canonique de \mathbb{R}^3 est $A = \begin{pmatrix} 2 & 0 & 4 \\ 3 & -4 & 12 \\ 1 & -2 & 5 \end{pmatrix}$.

Le polynôme caractéristique de u vaut donc

$$\chi_u(X) = \det(XI_3 - A) = \begin{vmatrix}
X - 2 & 0 & -4 \\
-3 & X + 4 & -12 \\
-1 & 2 & X - 5
\end{vmatrix} = X(X - 1)(X - 2).$$

Les valeurs propres de u sont les racines de ce polynôme :

$$Sp(u) = \{0, 1, 2\}.$$

Il y a donc trois sous-espaces propres:

$$E_{0}(u) = Ker(u) = Ker \begin{pmatrix} 2 & 0 & 4 \\ 3 & -4 & 12 \\ 1 & -2 & 5 \end{pmatrix} = Ker \begin{pmatrix} 2 & 0 & 4 \\ 1 & 0 & 2 \\ 1 & -2 & 5 \end{pmatrix}$$

$$= Ker \begin{pmatrix} 1 & 0 & 2 \\ 1 & -2 & 5 \end{pmatrix} = Ker \begin{pmatrix} 1 & 0 & 2 \\ 0 & -2 & 3 \end{pmatrix} = Vect \begin{pmatrix} -4 \\ 3 \\ 2 \end{pmatrix},$$

$$E_{1}(u) = Ker(u - Id) = Ker \begin{pmatrix} 1 & 0 & 4 \\ 3 & -5 & 12 \\ 1 & -2 & 4 \end{pmatrix} = Ker \begin{pmatrix} 1 & 0 & 4 \\ 3 & -5 & 12 \\ 0 & -2 & 0 \end{pmatrix} = Vect \begin{pmatrix} -4 \\ 0 \\ 1 \end{pmatrix},$$

$$E_{2}(u) = Ker(u - 2Id) = Ker \begin{pmatrix} 0 & 0 & 4 \\ 3 & -6 & 12 \\ 1 & -2 & 3 \end{pmatrix} = Vect \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}.$$

4) Eléments propres d'une matrice carrée

n désigne toujours un entier naturel non nul.

Par simplicité, les vecteurs colonnes de $\mathcal{M}_{n,1}(\mathbb{K})$ seront identifiés aux vecteurs de \mathbb{K}^n .

Définition 15 (Valeur/vecteur propre d'une matrice carrée)

Soit $A \in \mathcal{M}_n(\mathbb{K})$. On dit que $\lambda \in \mathbb{K}$ est une valeur propre de A lorsque λ est une valeur propre de l'endomorphisme canoniquement associé à A:

$$u: \left\{ \begin{array}{ccc} \mathbb{K}^n & \longrightarrow & \mathbb{K}^n \\ V & \longmapsto & AV \end{array} \right.$$

Tout vecteur colonne V tel que $V \neq 0_{\mathbb{K}^n}$ et $AV = \lambda V$ est alors appelé **vecteur propre** de la matrice A associé à la valeur propre λ .

Remarque

On a donc les équivalences :

Définition 16 (Sous-espaces propres d'une matrice carrée)

Soit $A \in \mathcal{M}_n(\mathbb{K})$ et $\lambda \in \mathbb{K}$ une valeur propre de A. On appelle sous-espace propre de A associé à λ le sous-espace vectoriel $E_{\lambda}(A) = Ker(A - \lambda I_n)$.

Remarque

Pour toute valeur propre λ de A, le sous-espace propre $E_{\lambda}(A)$ est un sous-espace vectoriel non nul de \mathbb{K}^n .

Définition 17 (Polynôme caractéristique d'une matrice carrée)

Soit $A \in \mathcal{M}_n(\mathbb{K})$. On appelle polynôme caractéristique de A le polynôme :

$$\chi_A(X) = \det(XI_n - A) \in \mathbb{K}[X].$$

Remarque

- χ_A est unitaire et de degré n.
- D'après ce qui précède, les valeurs propres d'une matrice $A \in \mathcal{M}_n(\mathbb{K})$ sont les racines dans \mathbb{K} de son polynôme caractéristique. Il y en a donc au plus n (la taille de la matrice).

Définition 18 (Spectre d'une matrice carrée)

Soit $A \in \mathcal{M}_n(\mathbb{K})$. On appelle spectre de A (noté Sp(A)) l'ensemble des valeurs propres de A. C'est une partie finie de \mathbb{K} (les racines de χ_A), de cardinal compris entre 0 et n.

ATTENTION!

Lorsque A est une matrice de $\mathcal{M}_n(\mathbb{R})$, il peut y avoir ambiguité sur la notion de "spectre" : en effet, on peut considérer A comme une matrice de $\mathcal{M}_n(\mathbb{C})$, donc parle-t-on des valeurs propres réelles ou complexes? Pour lever cette ambiguité, on peut utiliser les notations $Sp_{\mathbb{R}}(A)$ et $Sp_{\mathbb{C}}(A)$, ou plus généralement : si \mathbb{K} est un sous-corps de \mathbb{K}' et si $A \in \mathcal{M}_n(\mathbb{K})$, alors on peut noter $Sp_{\mathbb{K}}(A)$, $Sp_{\mathbb{K}'}(A)$ les spectres respectifs. On a bien entendu

$$Sp_{\mathbb{K}}(A) \subset Sp_{\mathbb{K}'}(A),$$

et l'inclusion peut être stricte.

En revanche, pour un endomorphisme $u \in \mathcal{L}(E)$, il n'y a en général pas ambiguité puisque E est défini comme un \mathbb{K} -espace vectoriel (avec \mathbb{K} donné), donc $Sp(u) \subset \mathbb{K}$ par définition.

Propriété 19 (Valeurs propres d'une matrice triangulaire)

Les valeurs propres d'une matrice triangulaire sont ses éléments diagonaux.

Preuve

Si T est triangulaire supérieure, son polynôme caractéristique vaut alors :

$$\chi_T(X) = \begin{vmatrix} X - a_{1,1} & -a_{1,2} & \cdots & -a_{1,n} \\ 0 & X - a_{2,2} & \cdots & -a_{2,n} \\ \vdots & & & \vdots \\ 0 & \cdots & \ddots & -a_{n-1,n} \\ 0 & \cdots & 0 & X - a_{n,n} \end{vmatrix} = (X - a_{1,1})(X - a_{2,2})\cdots(X - a_{n,n}) .$$

On a donc $\chi_T(\lambda) = 0 \iff \lambda \in \{a_{1,1}, \dots, a_{n,n}\}, \text{ et c'est la même chose si } T \text{ est triangulaire inférieure.}$

Propriété 20 (Des matrices semblables ont même poly. caractéristique)

Soient $A, B \in \mathcal{M}_n(\mathbb{K})$. Si A et B sont semblables, alors $\chi_A(X) = \chi_B(X)$.

Preuve

Par hypothèse, il existe $P \in GL_n(\mathbb{K})$ telle que $B = P^{-1}AP$. Donc, pour tout $x \in \mathbb{K}$:

$$xI_n - B = P^{-1}(xI_n)P - P^{-1}AP = P^{-1}(xI_n - A)P.$$

Il s'ensuit par multiplicativité du déterminant :

$$\det(xI_n - B) = \det(P^{-1}) \times \det(xI_n - A) \times \det(P) = \det(xI_n - A).$$

On a donc $\chi_A(x) = \chi_B(x)$ pour tout $x \in \mathbb{K}$, ce qui montre que les polynômes χ_A et χ_B sont égaux.

ATTENTION!

La réciproque est fausse. Par exemple $A=\begin{pmatrix}1&1\\0&1\end{pmatrix}$ et $I=\begin{pmatrix}1&0\\0&1\end{pmatrix}$ ne sont **pas** semblables (en effet,

I n'est semblable qu'à elle-même, puisque pour toute matrice inversible P, on a $P^{-1}IP = P^{-1}P = I$), bien qu'ayant même polynôme caractéristique : $\chi_A(X) = \chi_I(X) = (X-1)^2$.

Remarque

Deux matrices semblables ont donc les mêmes valeurs propres.

5) Multiplicité d'une valeur propre

Définition 21 (Multiplicité d'une valeur propre)

Soit $\lambda \in \mathbb{K}$ une valeur propre de $u \in \mathcal{L}(E)$. On appelle multiplicité de la valeur propre λ sa multiplicité en tant que racine de $\chi_u(X)$, c'est-à-dire le plus grand entier $k \in \mathbb{N}^*$ tel que $(X - \lambda)^k$ divise $\chi_u(X)$.

Remarque

La multiplicité d'une valeur propre est évidemment comprise entre 1 et $n = deg(\chi_u)$.

Exemple

Si
$$\chi_u(X) = (X-3)^2(X+1)$$
, alors $\begin{cases} \lambda_1 = 3 \text{ est valeur propre "double" (de multiplicité 2)} \\ \lambda_2 = -1 \text{ est valeur propre "simple" (de multiplicité 1)} \end{cases}$

Rappel (Multiplicité et dérivées successives)

Si $P \in \mathbb{K}[X]$ non constant, alors pour tout $\lambda \in \mathbb{K}$ et $m \in [1; \deg(P)]$:

$$\lambda \text{ est racine de } P \text{ de multiplicit\'e } m \iff \left\{ \begin{array}{l} P(\lambda) = P'(\lambda) = \cdots = P^{(m-1)}(\lambda) = 0 \\ P^{(m)}(\lambda) \neq 0 \end{array} \right. .$$

Rappel

Un polynôme de $\mathbb{K}[X]$ est dit **scindé** sur \mathbb{K} lorsqu'il s'écrit comme le produit de polynômes de degré 1 (pas nécessairement distincts) de $\mathbb{K}[X]$.

Propriété 22 (Forme du polynôme caractéristique sur $\mathbb{K} = \mathbb{C}$)

 $Si \mathbb{K} = \mathbb{C} \ et \ u \in \mathcal{L}(E), \ alors \ \chi_u \ est \ scindé, \ c'est-à-dire \ de \ la \ forme :$

$$\chi_u(X) = \prod^p (X - \lambda_k)^{\alpha_k},$$

 $\chi_u(X) = \prod_{k=1}^p (X - \lambda_k)^{\alpha_k},$ où $1 \le p \le n$, les $\lambda_k \in \mathbb{C}$ sont les valeurs propres distinctes de u, et les $\alpha_k \in \mathbb{N}^*$ leurs multiplicités respectives.

Preuve

C'est une conséquence directe de la propriété suivante : tout polynôme non constant de $\mathbb{C}[X]$ est scindé sur \mathbb{C} .

Et cette propriété se démontre simplement par récurrence sur le degré du polynôme à partir du théorème de d'Alembert-Gaüss (voir cours de MP2I).

Remarque

Avec les notations précédentes, on a
$$\sum_{k=1}^{p} \alpha_k = deg(\chi_u) = n$$
.

Remarque

- Bien noter qu'en général (sur $\mathbb{K} = \mathbb{R}$ ou \mathbb{C}) le nombre de valeurs propres distinctes p est inférieur ou égal à $n = \dim(E)$.
- Sur $\mathbb{K} = \mathbb{C}$, tout endomorphisme possède n valeurs propres pas forcément distinctes (elles sont "comptées avec multiplicité").

ATTENTION!

Si $\mathbb{K} = \mathbb{R}$, alors un polynôme caractéristique n'est pas nécessairement scindé.

Exemple (Matrice de rotation)

Soit $u \in \mathcal{L}(\mathbb{R}^3)$ l'endomorphisme canoniquement associé à la matrice

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix}, \qquad \theta \notin \pi \mathbb{Z}.$$

On a $\chi_A(X) = (X-1)(X^2-(2\cos\theta)X+1)$, et le facteur de degré 2 est irréductible sur \mathbb{R} (son discriminant est < 0), donc χ_A n'est pas scindé sur \mathbb{R} .

Bien entendu, si on considère A comme une matrice de $\mathcal{M}_n(\mathbb{C})$, on a χ_A scindé sur \mathbb{C} : en effet,

$$\chi_A(X) = (X - 1)(X - e^{i\theta})(X - e^{-i\theta}).$$

La matrice A ne possède donc qu'une valeur propre réelle, et deux valeurs propres complexes conjuguées. De plus, les trois valeurs propres de A sont simples (de multiplicité 1).

Théorème 23 (Polynôme caractéristique d'un endomorphisme induit)

Soit E un \mathbb{K} -e.v. de dimension $n \in \mathbb{N}^*$, $u \in \mathcal{L}(E)$ et F un sev non nul de E stable par u. Alors $\chi_{u_F}(X)$ divise $\chi_u(X)$.

Preuve

Notons $d = \dim(F) \in [1, n]$. On considère une base $\mathcal{B}_F = (e_1, \dots, e_d)$ de F, que l'on complète en une base $\mathcal{B} = (e_1, \dots, e_d, e_{d+1}, \dots, e_n)$ de E.

Puisque $u(e_i) \in F$ pour tout $i \in \{1, \dots, d\}$ (vu que $e_i \in F$), la matrice de u dans \mathcal{B} est de la forme $A = \begin{pmatrix} A_1 & M_1 \\ 0 & M_2 \end{pmatrix}$ (matrice "triangulaire par blocs"), avec $A_1 \in \mathcal{M}_d(\mathbb{K})$, $M_1 \in \mathcal{M}_{d,n-d}(\mathbb{K})$ et $M_2 \in \mathcal{M}_{n-d}(\mathbb{K})$. Le polynôme caractéristique de u vaut donc

$$\chi_u(X) = \chi_A(X) = \det(XI_n - A) = \begin{vmatrix} XI_d - A_1 & -M_1 \\ 0 & XI_{n-d} - M_2 \end{vmatrix}.$$

Par la formule du déterminant par blocs, on a :

$$\chi_u(X) = \det(XI_d - A_1) \times \det(XI_{n-d} - M_2) = \chi_{A_1}(X) \times \chi_{M_2}(X),$$

et cette égalité entre polynômes montre que $\chi_{A_1}(X)$ divise le polynôme $\chi_u(X)$. Mais $A_1 = Mat_{\mathcal{B}_F}(u_F)$, donc $\chi_{A_1}(X) = \chi_{u_F}(X)$.

On en déduit un lien entre la multiplicité d'une valeur propre et la dimension du sous-espace propre associé :

Théorème 24 (Lien entre multiplicité de λ et dimension de $E_{\lambda}(u)$)

Soit E un \mathbb{K} -e.v. de dimension $n \in \mathbb{N}^*$, soit $\lambda \in \mathbb{K}$ une valeur propre de $u \in \mathcal{L}(E)$ de multiplicité $\alpha_{\lambda} \in \mathbb{N}^*$. Alors, on a

$$1 \leq \dim(E_{\lambda}(u)) \leq \alpha_{\lambda},$$

où $E_{\lambda}(u) = Ker(u - \lambda Id_E)$ est le sous-espace propre de u associé à λ .

Preuve

On applique le théorème précédent au sev $E_{\lambda}(u)$, qui est bien non nul (puisque λ est une valeur propre de u), et stable par u (puisque u commute avec lui-même!). Pour tout $x \in E_{\lambda}(u)$, on a $u(x) = \lambda x$, donc l'endomorphisme induit $u_{E_{\lambda}(u)}$ est égal à $\lambda Id_{E_{\lambda}(u)}$. On en déduit que $\chi_{\lambda Id_{E_{\lambda}(u)}}$ divise χ_u , c'est-à-dire $(X - \lambda)^d$ divise χ_u (où $d = \dim(E_{\lambda}(u))$) ce qui montre que la multiplicité α_{λ} vérifie $\alpha_{\lambda} \geq d$, ce qui donne le résultat.

Remarque (Cas d'une valeur propre simple)

Si $\lambda \in \mathbb{K}$ est valeur propre simple de u, alors on a $\dim(E_{\lambda}(u)) = 1$, c'est-à-dire que le sous-espace propre associé est une droite vectorielle.

ATTENTION!

La remarque précédente n'admet **pas de réciproque** : il est possible que λ soit valeur propre de multiplicité ≥ 2 , mais que $\dim(E_{\lambda}) = 1$. De manière générale, on peut très bien avoir $\dim(E_{\lambda}) < \alpha_{\lambda}$.

III Endomorphismes/matrices diagonalisables

E désigne un K-espace vectoriel de dimension finie $n \in \mathbb{N}^*$, et $u \in \mathcal{L}(E)$.

On s'intéresse au problème suivant : existe-t-il une base $\mathcal{B} = (e_i)_{1 \leq i \leq n}$ de E dans laquelle la matrice de u est diagonale?

1) Définition

Définition 25 (Endomorphisme diagonalisable)

On dit que u est diagonalisable lorsqu'il existe une base de E dans laquelle la matrice de u est diagonale.

Propriété 26 (Définition équivalente d'un endomorphisme diagonalisable)

u est diagonalisable si et seulement s'il existe une base de E formée de vecteurs propres de u.

Preuve

Etant donnée une base $\mathcal{B} = (e_1, \dots, e_n)$ de E, la matrice $Mat_{\mathcal{B}}(u) = (a_{i,j})_{1 \leq i,j \leq n}$ est diagonale si et seulement si

$$u(e_j) = \sum_{i=1}^{n} \underbrace{a_{i,j}}_{=0 \text{ si } i \neq j} e_i = a_{j,j} e_j$$

pour tout $j \in [1, n]$, ce qui signifie que e_j est un vecteur propre de u (associé à la valeur propre $a_{j,j}$), puisqu'il est non nul, en tant que membre d'une base.

Vocabulaire

Si u est diagonalisable, diagonaliser l'endomorphisme u signifie trouver une telle base de vecteurs propres, appelée aussi base de diagonalisation de u.

On définit naturellement une notion analogue sur les matrices carrées :

Définition 27 (Matrice diagonalisable)

Une matrice $A \in \mathcal{M}_n(\mathbb{K})$ est dite diagonalisable lorsqu'elle est semblable à une matrice diagonale, c'est-à-dire lorsqu'il existe $P \in GL_n(\mathbb{K})$ telle que $P^{-1}AP$ soit diagonale.

Vocabulaire

Dans ce cas, **diagonaliser** la matrice A, c'est déterminer une matrice inversible P telle que la matrice $P^{-1}AP$ soit diagonale.

ATTENTION!

Toute matrice diagonale est diagonalisable, mais la réciproque est fausse ...

Remarque (Deux évidences)

• $Si\ A \in \mathcal{M}_n(\mathbb{K})$, alors

 $A \ diagonalisable \iff l'endomorphisme \ u: \left\{ \begin{array}{ccc} \mathbb{K}^n & \longrightarrow & \mathbb{K}^n \\ V & \longmapsto & AV \end{array} \right. \ est \ diagonalisable.$

• $Si \ u \in \mathcal{L}(E)$ et \mathcal{B} est une quelconque base de E, alors

 $u \ diagonalisable \iff Mat_{\mathcal{B}}(u) \ est \ diagonalisable.$

2) Théorème de diagonalisation

De manière générale, on dispose d'une condition nécessaire et suffisante pour qu'un endomorphisme (ou une matrice) soit diagonalisable.

Théorème 28 (Caractérisation des endomorphismes diagonalisables)

u est diagonalisable si et seulement si $\left(Sp(u) \neq \emptyset \text{ et } \bigoplus_{\lambda \in Sp(u)} E_{\lambda}(u) = E\right)$.

Dans ce cas, on a

$$\chi_u(X) = \prod_{\lambda \in Sp(u)} (X - \lambda)^{\dim(E_\lambda(u))}$$

(chaque valeur propre a une multiplicité égale à la dimension du sous-espace propre associé).

Remarque (Reformulation)

u est diagonalisable si et seulement si les sous-espaces propres de u sont supplémentaires dans E.

Preuve

 \Longrightarrow Si u est diagonalisable, alors il existe une base $(e_i)_{1 \leq i \leq n}$ de E formée de vecteurs propres de u, donc u possède au moins une valeur propre, i.e. $Sp(u) \neq \emptyset$. On a déjà montré que la somme $\sum_{\lambda \in Sp(u)} E_{\lambda}(u)$ est directe (cf. prop. 8), reste à prouver que cette somme est égale à E.

Chaque vecteur e_i appartient à un (seul) sous-espace propre $E_{\lambda}(u)$ (mais plusieurs e_i peuvent appartenir au même $E_{\lambda}(u)$), donc

$$\forall i \in \{1, \dots, n\}, \quad e_i \in \bigoplus_{\lambda \in Sp(u)} E_{\lambda}(u).$$

Ainsi, la base (e_1, \dots, e_n) est une famille libre du sous-espace vectoriel $\bigoplus_{\lambda \in Sp(u)} E_{\lambda}(u)$, donc

$$\dim\left(\bigoplus_{\lambda\in Sp(u)} E_{\lambda}(u)\right) \ge n = \dim(E).$$

Il s'ensuit $\bigoplus_{\lambda \in Sp(u)} E_{\lambda}(u) = E$.

valeurs propres distinctes) et $Sp(u) = \{\lambda_1, \dots, \lambda_p\}$. En concaténant des bases respectives $\mathcal{B}_1, \dots, \mathcal{B}_p$ des sous-espaces propres $E_{\lambda_1}(u), \dots, E_{\lambda_p}(u)$, on obtient une base $\mathcal{B} = (\mathcal{B}_1, \dots, \mathcal{B}_p)$ de E adaptée à la somme directe $\bigoplus_{\lambda \in Sp(u)} E_{\lambda}(u) = E$. Ecrivons alors la matrice de u dans cette base. Chaque sous-espace

propre $E_{\lambda_k}(u)$ est stable par u, et l'endomorphisme induit est $u_{E_{\lambda_k}(u)} = \lambda_k Id_{E_{\lambda_k}(u)}$, donc

$$Mat_{\mathcal{B}}(u) = \begin{pmatrix} A_1 & 0 & \cdots & 0 \\ 0 & A_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & A_p \end{pmatrix}, \qquad A_k = \begin{pmatrix} \lambda_k & & (0) \\ & \ddots & \\ (0) & & \lambda_k \end{pmatrix} = Mat(u_{E_{\lambda_k}(u)}).$$

Cette matrice est diagonale, donc u est diagonalisable.

De plus, le polynôme caractéristique de u est :

$$\chi_u(X) = \prod_{k=1}^p \chi_{A_k}(X) = \prod_{k=1}^p (X - \lambda_k)^{\dim(E_{\lambda_k}(u))},$$

ce qui montre la formule voulue.

Remarque

Si on trouve des sous-espaces propres qui sont supplémentaires dans E, alors il n'y en a pas d'autres (à cause du fait que des sous-espaces propres sont toujours en somme directe), et donc u est diagonalisable.

Remarque (IMPORTANT)

Si u est diagonalisable, alors vu l'expression de χ_u , n'importe quelle matrice diagonale D qui représente u (on dit que D est une "réduite" de u) vérifie les propriétés suivantes :

- ullet les coefficients diagonaux de D sont exactement les valeurs propres de u.
- chaque valeur propre est représentée sur la diagonale de D autant de fois que son ordre de multiplicité.

Il y a donc unicité de la "réduite" D à l'ordre des éléments près. En revanche, il n'y a pas unicité de la base de diagonalisation (même pas à l'ordre des vecteurs près).

On déduit de la proposition précédente le théorème suivant :

Théorème 29 (Théorème de diagonalisation)

Soit E un \mathbb{K} -e.v. de dimension $n \in \mathbb{N}^*$, et $u \in \mathcal{L}(E)$.

On note $\chi_u(X) = \det(XId_E - u)$ son polynôme caractéristique.

- (i) Si χ_u n'est pas scindé sur \mathbb{K} , alors u n'est pas diagonalisable.
- (ii) Si χ_u est scindé sur \mathbb{K} , alors en notant $\chi_u(X) = \prod_{k=1}^p (X \lambda_k)^{\alpha_k}$ (avec les λ_k deux à deux distincts et les $\alpha_k \in \mathbb{N}^*$), on a les équivalences :

$$u \ est \ diagonalisable \iff E_{\lambda_1}(u) \oplus \cdots \oplus E_{\lambda_p}(u) = E$$

$$\iff \sum_{k=1}^p \dim(E_{\lambda_k}(u)) = n$$

$$\iff \forall k \in [1; p], \ \dim(E_{\lambda_k}(u)) = \alpha_k$$

Dans ce cas, on obtient une base de diagonalisation de u en concaténant des bases des sous-espaces propres.

Remarque

Interprétation du théorème : les endomorphismes diagonalisables sont ceux qui ont des sous-espaces propres de dimension maximale (égale à la multiplicité des valeurs propres). Ainsi, on dispose de "suffisamment de vecteurs propres libres" pour construire une base de E qui diagonalise u.

Preuve

- (i) Le théorème précédent montre que si u est diagonalisable, alors χ_u est scindé sur \mathbb{K} (c'est un produit de polynômes de degré 1, non nécessairement distincts). Par contraposée, on obtient le point (i).
- (ii) Supposons χ_u scindé sur \mathbb{K} , on le note $\chi_u(X) = \prod_{k=1}^p (X \lambda_k)^{\alpha_k}$, avec les λ_k deux à deux distincts et les $\alpha_k \in \mathbb{N}^*$. La proposition précédente montre que

$$u$$
 diagonalisable $\iff E_{\lambda_1}(u) \oplus \cdots \oplus E_{\lambda_n}(u) = E$.

Vu qu'on a toujours $E_{\lambda_1}(u) \oplus \cdots \oplus E_{\lambda_p}(u) \subset E$, on en déduit que

$$u$$
 diagonalisable \iff dim $(E_{\lambda_1}(u) \oplus \cdots \oplus E_{\lambda_p}(u)) = \dim(E),$

c'est-à-dire

$$u$$
 diagonalisable \iff dim $(E_{\lambda_1}(u)) + \cdots + \dim(E_{\lambda_n}(u)) = n.$

Mais on a aussi $n = \deg(\chi_u) = \alpha_1 + \cdots + \alpha_p$, donc

$$u$$
 diagonalisable \iff $(\alpha_1 - \dim(E_{\lambda_1}(u))) + \cdots + (\alpha_p - \dim(E_{\lambda_p}(u))) = 0.$

Puisque tous les termes $\alpha_k - \dim(E_{\lambda_k}(u))$ sont positifs (d'après le théorème 24), on en déduit que cette somme est nulle si et seulement si chaque terme est nul. D'où :

$$u$$
 diagonalisable $\iff \forall k \in \{1, \dots, p\}, \ \alpha_k - \dim(E_{\lambda_k}(u)) = 0.$

Remarque

- $Si \mathbb{K} = \mathbb{C}$, la condition " χ_u est scindé" est automatique.
- Même si un endomorphisme $u \in \mathcal{L}(E)$ (où $\mathbb{K} = \mathbb{R}$) a toutes ses valeurs propres réelles, il n'est pas nécessairement diagonalisable!

Exemple

Soit l'endomorphisme f de \mathbb{R}^3 défini par :

$$f(x, y, z) = (y + z, -x + 2y + z, -x + y + 2z).$$

- 1. Montrer que f est diagonalisable et le diagonaliser.
- 2. Diagonaliser la matrice A canoniquement associée à f.

Solution : La matrice de f dans la base canonique de \mathbb{R}^3 est

$$A = \left(\begin{array}{rrr} 0 & 1 & 1 \\ -1 & 2 & 1 \\ -1 & 1 & 2 \end{array}\right).$$

 $\chi_f(X) = \chi_A(X) = (X-1)^2(X-2)$, donc f possède une valeur propre double (1) et une valeur propre simple (2).

- Le sous-espace propre $E_2(f)$ est nécessairement de dimension 1, puisque la valeur propre 2 est simple. On a $E_2(f) = Vect \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.
- L'endomorphisme f est diagonalisable si et seulement si $\dim(E_1(f)) = 2$ (puisque la valeur propre 1 est de multiplicité 2). C'est le cas car $E_1(f) = Vect\left(\begin{pmatrix}1\\0\\1\end{pmatrix},\begin{pmatrix}1\\1\\0\end{pmatrix}\right)$. Donc f est diagonalisable.
- Les calculs précédents montrent que la famille (u_1, u_2, u_3) obtenue est une base de \mathbb{R}^3 formée de vecteurs propres pour f. La matrice de f dans la base (u_1, u_2, u_3) est

$$D = \left(\begin{array}{ccc} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right).$$

• Tout ceci montre aussi que la matrice A est diagonalisable, puisque $D = P^{-1}AP$, avec

$$P = \left(\begin{array}{rrr} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array}\right)$$

(la matrice de passage de la base canonique vers la base (u_1, u_2, u_3)).

Remarque

 $Si\ P^{-1}AP = D\ avec\ D\ diagonale\ et\ P\ inversible$:

- les colonnes de la matrice P forment une base de diagonalisation de l'endomorphisme canoniquement associé à A, noté $u: \left\{ \begin{array}{ccc} \mathbb{K}^n & \longrightarrow & \mathbb{K}^n \\ V & \longmapsto & AV \end{array} \right.$ Cette matrice P est la matrice de passage de la base canonique $\mathcal{B}_0 = (e_1, \cdots, e_n)$ de \mathbb{K}^n à la base
 - Cette matrice P est la matrice de passage de la base canonique $\mathcal{B}_0 = (e_1, \dots, e_n)$ de \mathbb{K}^n à la base de vecteurs propres $\mathcal{B} = (v_1, \dots, v_n)$.
- D est la matrice de u dans la base B. Elle est diagonale, et ses éléments diagonaux sont les valeurs propres de A.

Exemple

Montrer que l'endomorphisme $u: \mathbb{R}_2[X] \to \mathbb{R}_2[X]$ défini par u(P) = P + P' n'est pas diagonalisable.

Solution : La matrice de u dans la base canonique $(1, X, X^2)$ est

$$A = \left(\begin{array}{rrr} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{array}\right).$$

On en déduit que $\chi_u(X) = (X-1)^3$: u possède une valeur propre triple : 1.

Si u était diagonalisable, on aurait alors A semblable à $I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, donc $A = P^{-1}I_3P$ avec P inversible, c'est-à-dire $A = I_3$, ce qui est faux. Donc u n'est pas diagonalisable.

3) Cas des projecteurs et symétries

Propriété 30 (Diagonalisabilité des projecteurs et symétries)

- (i) Tout projecteur $p: E \to E$ est diagonalisable. De plus, si $p \notin \{0_{\mathcal{L}(E)}, Id_E\}$, alors p possède exactement deux sous-espaces propres : $E_0(p) = Ker(p)$ et $E_1(p) = Ker(p - Id_E) = Im(p)$.
- (ii) Toute symétrie $s: E \to E$ est diagonalisable. De plus, si $s \notin \{Id_E, -Id_E\}$, alors s possède exactement deux sous-espaces propres : $E_1(s) = Ker(s - Id_E)$ et $E_{-1}(s) = Ker(s + Id_E)$.

Preuve

(i) Si $p:E\to E$ est un projecteur, alors en considérant une base $\mathcal B$ adaptée à la somme directe :

$$E = Im(p) \oplus Ker(p) = Ker(p - Id_E) \oplus Ker(p),$$

on a

$$Mat_{\mathcal{B}}(p) = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix},$$

où
$$r = rg(p) = \dim(Im(p)) \in \{0, \dots, n\}$$

(ii) Si $s: E \to E$ est une symétrie, alors en considérant une base $\mathcal B$ adaptée à la somme directe :

$$E = Ker(s - Id_E) \oplus Ker(s + Id_E),$$

on a

$$Mat_{\mathcal{B}}(s) = \begin{pmatrix} I_r & 0 \\ 0 & -I_{n-r} \end{pmatrix},$$

où
$$r = \dim(Ker(s - Id_E)) \in \{0, \dots, n\}.$$

Remarque

Si E est un espace euclidien, alors les deux sous-espaces propres d'un projecteur orthogonal différent de $0_{\mathcal{L}(E)}$ et Id_E (respectivement d'une symétrie orthogonale différente de $\pm Id_E$) sont supplémentaires orthogonaux.

4) Cas où χ_u est scindé à racines simples

Rappel

On dit qu'un polynôme P est scindé à racines simples (ou simplement scindé) sur \mathbb{K} lorsqu'il est scindé sur \mathbb{K} et toutes ses racines sont de multiplicité 1.

Par exemple, $X^2 + (1-i)X - i = (X+1)(X-i)$ est scindé à racines simples sur \mathbb{C} , mais pas $X^3 - 2iX^2 - X = X(X-i)^2$.

Propriété 31 (Cas où χ_u est scindé à racines simples)

Soit E un \mathbb{K} -e.v. de dimension $n \in \mathbb{N}^*$, et $u \in \mathcal{L}(E)$.

Si χ_u est scindé à racines simples sur \mathbb{K} , alors u est diagonalisable.

Preuve

Dans ce cas, u possède n sous-espaces propres, qui sont des droites

(puisque $\forall k \in [1, n], 1 \leq \dim(E_{\lambda_k}(u)) \leq \alpha_k = 1$). On a donc bien $\sum_{k=1}^n \dim(E_{\lambda_k}(u)) = n$, ce qui prouve que u est diagonalisable.

Remarque

Cela revient à dire que \mathbf{si} u possède n valeurs propres distinctes (avec $n = \dim(E)$), \mathbf{alors} u est diagonalisable.

Et en conséquence immédiate : si $A \in \mathcal{M}_n(\mathbb{K})$ possède n valeurs propres distinctes dans \mathbb{K} , alors A est diagonalisable.

ATTENTION!

La réciproque est fausse!

Par exemple, Id_E est diagonalisable et pourtant, cet endomorphisme ne possède qu'une valeur propre (1) de multiplicité n (on a $\chi_{Id_E}(X) = (X-1)^n$).

Exemple (Extrait de CCP TSI 2012)

Montrer que l'endomorphisme $u: \mathbb{R}_3[X] \to \mathbb{R}_3[X]$ défini par

$$u(P) = (X+2)P(X) - XP(X+1)$$

est diagonalisable. Solution : Sa matrice dans la base $\mathcal{B} = (1, X, X^2, X^3)$ est

$$A = \left(\begin{array}{cccc} 2 & 0 & 0 & 0 \\ 0 & 1 & -1 & -1 \\ 0 & 0 & 0 & -3 \\ 0 & 0 & 0 & -1 \end{array}\right),$$

donc $Sp(u) = Sp(A) = \{-1, 0, 1, 2\}$ (puisque la matrice est triangulaire).

Vu que l'endomorphisme u possède 4 valeurs propres distinctes (et $\dim(E) = 4$), on en déduit que u est diagonalisable, et que la matrice A est semblable à

$$D = \left(\begin{array}{cccc} 2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \end{array}\right),$$

mais aussi à toute matrice diagonale dont la diagonale est une permutation du quadruplet (2, 1, 0, -1) (il y a donc 4! = 24 réduites possibles).

Exemple

Soit
$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$
. A est-elle diagonalisable dans $\mathcal{M}_4(\mathbb{R})$? Dans $\mathcal{M}_4(\mathbb{C})$?

Solution: On montre que le polynôme caractéristique de A vaut

$$\chi_A(X) = (X-1)(X+1)(X^2+1) = (X-1)(X+1)(X-i)(X+i).$$

- Ce polynôme n'est pas scindé sur \mathbb{R} , donc A n'est pas diagonalisable dans $\mathcal{M}_4(\mathbb{R})$.
- Ce polynôme est scindé à racines simples sur \mathbb{C} , donc A est diagonalisable dans $\mathcal{M}_4(\mathbb{C})$ et les sous-espaces propres sont quatre droites supplémentaires de \mathbb{C}^4 :

$$E_1(A) \oplus E_{-1}(A) \oplus E_i(A) \oplus E_{-i}(A) = \mathbb{C}^4.$$

ATTENTION!

Dans l'exemple précédent, remarquons que la matrice A est **équivalente en lignes à** I_4 , mais **pas semblable à** I_4 !

La matrice
$$A$$
 est semblable (dans $\mathcal{M}_4(\mathbb{C})$) à $D = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & i & 0 \\ 0 & 0 & 0 & -i \end{pmatrix}$

IV Endomorphismes/matrices trigonalisables

E désigne encore un K-espace vectoriel de dimension $n \in \mathbb{N}^*$.

1) Définition

Définition 32 (Endomorphisme trigonalisable)

Un endomorphisme $u \in \mathcal{L}(E)$ est dit **trigonalisable** lorsqu'il existe une base de E dans laquelle la matrice de u est triangulaire.

Vocabulaire

Trigonaliser l'endomorphisme u signifie trouver une telle base de E, appelée base de trigonalisation de u.

Remarque

- Tout endomorphisme diagonalisable est trigonalisable (puisqu'une matrice diagonale est triangulaire), mais la réciproque est fausse.
- Si u est trigonalisable, on peut toujours se ramener (quitte à permuter les vecteurs de la base) à une matrice triangulaire supérieure (ou inférieure, c'est comme on veut).

Exemple

Montrer que l'endomorphisme $u: \left\{ \begin{array}{ccc} \mathbb{C}^2 & \longrightarrow & \mathbb{C}^2 \\ \left(\begin{array}{c} x \\ y \end{array} \right) & \longmapsto & \left(\begin{array}{c} ix + (1+i)y \\ iy \end{array} \right) \end{array} \right.$ est trigonalisable, mais pas

diagonalisable. Solution : En effet, dans la base canonique de \mathbb{C}^2 (notée $e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, e_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$),

la matrice de u est

$$A = \left(\begin{array}{cc} i & 1+i \\ 0 & i \end{array}\right),$$

elle est triangulaire. Ceci montre que \boldsymbol{u} est trigonalisable.

Par contre, si u était diagonalisable, la matrice A le serait aussi, et puisque $Sp(A) = \{i\}$, on aurait A semblable à iI_2 , ce qui est impossible (puisqu'on a $P^{-1}(iI_2)P = iI_2 \neq A$ pour toute matrice P inversible). Donc u n'est pas diagonalisable.

Définition 33 (Matrice trigonalisable)

Une matrice $A \in \mathcal{M}_n(\mathbb{K})$ est dite **trigonalisable** lorsqu'elle est semblable à une matrice triangulaire, c'est-à-dire lorsqu'il existe $P \in GL_n(\mathbb{K})$ telle que $P^{-1}AP$ soit triangulaire.

Vocabulaire

Trigonaliser la matrice A, c'est déterminer explicitement une matrice inversible P telle que $P^{-1}AP$ soit triangulaire. Comme pour la diagonalisation, les colonnes de P représentent une base de trigonalisation de l'endomorphisme $u: V \mapsto AV$ canoniquement associé à A.

Remarque

- Toute matrice triangulaire est trigonalisable, et la réciproque est fausse.
- $Si \ A \in \mathcal{M}_n(\mathbb{K}), \ alors$

A trigonalisable \iff l'endomorphisme $u: \left\{ \begin{array}{ccc} \mathbb{K}^n & \longrightarrow & \mathbb{K}^n \\ V & \longmapsto & AV \end{array} \right.$ est trigonalisable.

• $Si \ u \in \mathcal{L}(E)$ et \mathcal{B} est une quelconque base de E, alors

 $u \ trigonalisable \iff Mat_{\mathcal{B}}(u) \ est \ trigonalisable.$

2) Théorème de trigonalisation et conséquences

Théorème 34 (Théorème de trigonalisation)

Soit E un \mathbb{K} -espace vectoriel de dimension $n \in \mathbb{N}^*$, et $u \in \mathcal{L}(E)$. Alors :

u est trigonalisable \iff le polynôme caractéristique χ_u est scindé sur \mathbb{K} .

Preuve

• \Longrightarrow Si u est trigonalisable, alors u se représente par une matrice triangulaire supérieure $a_{1,1} * * *$ dans une certaine base \mathcal{B}

$$T = \begin{pmatrix} a_{1,1} & * & * \\ & \ddots & * \\ 0 & & a_{n,n} \end{pmatrix}$$
dans une certaine base \mathcal{B} .

On a donc $\chi_u(X) = \det(XI_n - T) = \prod_{k=1}^n (X - a_{k,k}) \in \mathbb{K}[X]$, ce qui prouve que χ_u est scindé sur \mathbb{K} (attention, pas nécessairement à racines simples!).

- \subset On procède par récurrence sur $n = \dim(E) \in \mathbb{N}^*$.
 - * Pour n=1, le résultat est évident car en dimension 1, tout endomorphisme se représente par une matrice 1×1 , qui est évidemment triangulaire!
 - * Soit $n \geq 1$. Supposons qu'en dimension n, tout endomorphisme ayant son polynôme caractéristique scindé soit trigonalisable, et montrons que ceci reste vrai en dimension n+1. Soit donc E un \mathbb{K} -espace vectoriel de dimension n+1, et soit $u \in \mathcal{L}(E)$ tel que χ_u soit scindé sur \mathbb{K} . On va montrer que u est trigonalisable.

Puisque χ_u est scindé sur \mathbb{K} , u possède au moins une valeur propre $\lambda \in \mathbb{K}$.

Notons $e \in E$ un vecteur propre associé, et complétons (e) en une base $\mathcal{B} = (e, e_2, \dots, e_{n+1})$ de E. La matrice de u dans \mathcal{B} est de la forme

$$A = \begin{pmatrix} \frac{\lambda & * & \cdots & *}{0} \\ \vdots & & & \\ \vdots & & A_1 \\ 0 & & & \end{pmatrix} \in \mathcal{M}_{n+1}(\mathbb{K}), \qquad A_1 \in \mathcal{M}_n(\mathbb{K}).$$

Exprimons alors χ_u : en développant par rapport à C_1 , on obtient

$$\chi_u(X) = \det(XI_{n+1} - A) = (X - \lambda) \times \det(XI_n - A_1) = (X - \lambda)\chi_{A_1}(X).$$

Puisque χ_u est scindé sur \mathbb{K} , son diviseur χ_{A_1} est aussi scindé sur \mathbb{K} . Par hypothèse de récurrence, la matrice A_1 est donc trigonalisable (car elle représente un endomorphisme en dimension n dont le polynôme caractéristique est scindé).

D'où l'existence d'une matrice $P_1 \in GL_n(\mathbb{K})$ telle que $P_1^{-1}A_1P_1 = T_1$ soit triangulaire supérieure.

On conclut en posant
$$P=\begin{pmatrix} \frac{1}{0} & 0 & \cdots & 0 \\ \vdots & & & \\ 0 & & & \end{pmatrix}$$
 : on a $P\in GL_{n+1}(\mathbb{K})$ (puisque $\det(P)=$

 $1 \times \det(P_1) \neq 0$, et

$$P^{-1}AP = \begin{pmatrix} \frac{1}{0} & 0 & \cdots & 0 \\ \vdots & & P_1^{-1} \\ 0 & & & \end{pmatrix} \begin{pmatrix} \frac{\lambda}{0} & * & \cdots & * \\ \hline 0 & & & \\ \vdots & & A_1 & \end{pmatrix} \begin{pmatrix} \frac{1}{0} & 0 & \cdots & 0 \\ \hline \vdots & & & \\ 0 & & & & \\ \hline \vdots & & & P_1 & \end{pmatrix}$$
$$= \begin{pmatrix} \frac{1}{0} & * & \cdots & * \\ \hline 0 & & & & \\ \vdots & & & & \\ \hline 0 & & & & \\ \hline \end{bmatrix}.$$

Cette matrice est bien triangulaire supérieure, ce qui montre que A est trigonalisable, et donc u aussi.

Remarque (IMPORTANT)

Si u est trigonalisable, et si T est une matrice triangulaire représentant u, alors

- les éléments diagonaux de T sont exactement les valeurs propres de u.
- chaque valeur propre apparaît sur la diagonale de T autant de fois que sa multiplicité.

Mais à l'inverse de la diagonalisation, la matrice T n'est pas unique (même à l'ordre des facteurs diagonaux près), à cause des éléments non diagonaux de T.

Corollaire 35 (Cas complexe / cas réel)

- (i) Si $\mathbb{K} = \mathbb{C}$, alors tout endomorphisme $u \in \mathcal{L}(E)$ est trigonalisable.
- (ii) $Si \mathbb{K} = \mathbb{R}$, alors tout endomorphisme $u \in \mathcal{L}(E)$ ayant toutes ses valeurs propres dans \mathbf{R} est trigonalisable.

Preuve

- (i) On a $\chi_u \in \mathbb{C}[X]$ et χ_u non constant, donc χ_u est scindé sur \mathbb{C} , et on en déduit par le théorème 34 que u est trigonalisable.
- (ii) Ici, $\chi_u \in \mathbb{R}[X]$ et par hypothèse, toutes les racines de χ_u sont réelles. On a donc la factorisation $\chi_u(X) = \prod_{\lambda \in sp(u)} (X \lambda)^{\alpha_{\lambda}}$, où chaque valeur propre $\lambda \in \mathbb{R}$ a pour multiplicité $\alpha_{\lambda} \in \mathbb{N}^*$. D'où χ_u est scindé sur \mathbb{R} , ce qui entraîne par le théorème 34 que u est trigonalisable.

Corollaire 36 (Trigonalisation des matrices carrées)

- (i) Toute matrice $A \in \mathcal{M}_n(\mathbb{C})$ est trigonalisable.
- (ii) Toute matrice $A \in \mathcal{M}_n(\mathbb{R})$ est trigonalisable dans $\mathcal{M}_n(\mathbb{C})$, i.e. il existe $P \in GL_n(\mathbb{C})$ telle que $P^{-1}AP$ soit triangulaire (dans $\mathcal{M}_n(\mathbb{C})$).
- (iii) Toute matrice $A \in \mathcal{M}_n(\mathbb{R})$ telle que χ_A est scindé sur R est trigonalisable dans R, c'est-à-dire qu'il existe $P \in GL_n(\mathbb{R})$ telle que $P^{-1}AP$ soit triangulaire (dans $\mathcal{M}_n(\mathbb{R})$).

Preuve

Il suffit d'appliquer le corollaire précédent à l'endomorphisme $u \in \mathcal{L}(\mathbb{K}^n)$ canoniquement associé à A:

$$u: \left\{ \begin{array}{ccc} \mathbb{K}^n & \longrightarrow & \mathbb{K}^n \\ V & \longmapsto & AV \end{array} \right.,$$

et cela montre (i) et (iii). Pour le point (ii), il suffit de considérer A comme une matrice de $\mathcal{M}_n(\mathbb{C})$, ainsi $u \in \mathcal{L}(\mathbb{C}^n)$ et on se ramène à (i).

3) Expressions de la trace et du déterminant

Propriété 37 (Lien entre trace, déterminant et valeurs propres)

Soit E un \mathbb{K} -espace vectoriel de dimension $n \in \mathbb{N}^*$, et $u \in \mathcal{L}(E)$.

On suppose que χ_u est scindé sur \mathbb{K} . Notons $\lambda_1, \dots, \lambda_n$ les valeurs propres de u (pas nécessairement distinctes, mais comptées avec multiplicité). Alors, on a

$$tr(u) = \sum_{k=1}^{n} \lambda_k, \quad \det(u) = \prod_{k=1}^{n} \lambda_k.$$

Preuve

Puisque χ_u est scindé sur \mathbb{K} , l'endomorphisme u est trigonalisable, donc il existe une base \mathcal{B} de E dans laquelle $T = Mat_{\mathcal{B}}(u)$ est triangulaire supérieure, avec pour éléments diagonaux $\lambda_1, \dots, \lambda_n$.

Donc, par définition de la trace et du déterminant d'un endomorphisme (qui ne dépendent pas de la base de représentation) :

$$tr(u) = tr(T) = \sum_{k=1}^{n} \lambda_k, \quad det(u) = det(T) = \prod_{k=1}^{n} \lambda_k.$$

Corollaire 38 (Lien entre trace, dét. et valeurs propres d'une matrice)

Pour toute matrice $A \in \mathcal{M}_n(\mathbb{C})$,

- (i) La trace de A est la somme de ses valeurs propres (comptées avec multiplicité).
- (ii) Le déterminant de A est le produit de ses valeurs propres (comptées avec multiplicité). Ces résultats sont aussi valables pour toute matrice $A \in \mathcal{M}_n(\mathbb{R})$ ayant toutes ses valeurs propres réelles.

Preuve

Evident en raisonnant sur l'endomorphisme canoniquement associé à A et en appliquant le corollaire précédent.

ATTENTION!

Les valeurs propres de multiplicité ≥ 2 "comptent plusieurs fois" dans le calcul de la trace et du déterminant.

Exemple

En dimension 3, si $\chi_u(X) = (X-1)(X-3)^2$, alors on a

$$tr(u) = 1 + 3 + 3 = 7,$$
 $det(u) = 1 \times 3 \times 3 = 9.$

ATTENTION!

Dans les cas où $A \in \mathcal{M}_n(\mathbb{R})$ possède des valeurs propres complexes non réelles, il faut tenir compte de ces valeurs propres dans le calcul de la trace et du déterminant.

Exemple (Encore la matrice de rotation)

On fixe un réel θ et on considère la matrice $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix}$.

On a $tr(A) = 1 + 2\cos(\theta)$, et

$$\chi_A(X) = (X-1)(X^2 - 2\cos(\theta)X + 1) = (X-1)(X - e^{i\theta})(X - e^{-i\theta}).$$

Dans \mathbb{C} , la somme des trois valeurs propres est bien égale à la trace :

$$1 + e^{i\theta} + e^{-i\theta} = 1 + 2\cos(\theta).$$

4) Trigonalisation en dimension 2

Méthode (Trigonalisation en dimension 2)

Considérons une matrice $A \in \mathcal{M}_2(\mathbb{K})$. On suppose que A est trigonalisable dans $\mathcal{M}_2(\mathbb{K})$ mais non diagonalisable.

En notant $u: V \mapsto AV$ l'endomorphisme de \mathbb{K}^2 canoniquement associé à A, on a donc

$$\chi_u(X) = (X - \lambda)^2$$
, $\dim(E_\lambda(u)) = 1$.

- On détermine une base (v_1) de $E_{\lambda}(u)$. On a donc $u(v_1) = \lambda v_1$.
- On complète en une base $\mathcal{B} := (v_1, v_2)$ de \mathbb{K}^2 .

La matrice de u dans \mathcal{B} est alors de la forme $T = \begin{pmatrix} \lambda & * \\ 0 & * \end{pmatrix}$.

Vu que cette matrice est semblable à A, on a $tr(T) = tr(A) = 2\lambda$, et donc

$$T = \left(\begin{array}{cc} \lambda & * \\ 0 & \lambda \end{array}\right).$$

On a donc trigonalisé A, puisque T est triangulaire et semblable à A: en effet, on a $T = P^{-1}AP$, où P est la matrice de passage dont les colonnes sont les coordonnées de v_1 et v_2 dans la base canonique.

ATTENTION!

 v_1 est un vecteur propre de u, mais pas v_2 !

Méthode (Choix optimal de v_2)

On peut "optimiser" le choix du vecteur v_2 , afin d'obtenir une base $\mathcal{B} := (v_1, v_2)$ dans laquelle la matrice de u est

$$T = \left(\begin{array}{cc} \lambda & 1\\ 0 & \lambda \end{array}\right).$$

Il suffit pour cela de prendre v_2 tel que

$$u(v_2) = v_1 + \lambda v_2$$

(et c'est toujours possible, c'est l'objet d'une théorie plus poussée appelée la "réduction de Jordan"). En pratique, le calcul d'un tel vecteur v_2 est simple (système linéaire avec second membre à résoudre) : en notant $\begin{pmatrix} x \\ y \end{pmatrix}$ les coordonnées de v_2 dans la base canonique de \mathbb{K}^2 , et $\begin{pmatrix} a \\ b \end{pmatrix}$ celles de v_1 , on a

$$u(v_2) = v_1 + \lambda v_2 \iff (u - \lambda Id)(v_2) = v_1 \iff (A - \lambda I_2) \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix}.$$

5) Trigonalisation en dimension 3

Considérons une matrice $A \in \mathcal{M}_3(\mathbb{K})$. On suppose que A est **trigonalisable** dans $\mathcal{M}_3(\mathbb{K})$ mais **non** diagonalisable.

En notant $u:V\mapsto AV$ l'endomorphisme de \mathbb{K}^3 canoniquement associé à A, on a donc deux cas possibles :

- a) $\chi_u(X) = (X \alpha)(X \beta)^2$ avec $\alpha \neq \beta$, et $\dim(E_\alpha(u)) = \dim(E_\beta(u)) = 1$.
- b) $\chi_u(X) = (X \alpha)^3$ avec dim $(E_\alpha(u)) = 1$ ou 2.

a) Trigonalisation avec une valeur propre simple et une double

On suppose que $\chi_u(X) = (X - \alpha)(X - \beta)^2$ avec $\alpha \neq \beta$ et les sous-espaces propres vérifient :

$$\dim(E_{\alpha}(u)) = \dim(E_{\beta}(u)) = 1.$$

Méthode

- On détermine une base (v_1) de $E_{\alpha}(u)$ et une base (v_2) de $E_{\beta}(u)$. Puisque les deux espaces propres sont en somme directe, (v_1, v_2) est une famille libre de \mathbb{K}^3 .
- On peut la compléter en une base $\mathcal{B} := (v_1, v_2, v_3)$ de \mathbb{K}^3 . Puisque $u(v_1) = \alpha v_1$ et $u(v_2) = \beta v_2$, on a

$$Mat_{\mathcal{B}}(u) = T = \left(\begin{array}{ccc} \alpha & 0 & * \\ 0 & \beta & * \\ 0 & 0 & * \end{array} \right).$$

• Pour des raisons de trace ($tr(T) = tr(A) = \alpha + 2\beta$), on a nécessairement :

$$T = \left(\begin{array}{ccc} \alpha & 0 & * \\ 0 & \beta & * \\ 0 & 0 & \beta \end{array}\right).$$

On a bien trigonalisé A, puisque T est semblable à A et que T est triangulaire.

Méthode (Choix optimal de v_3)

On peut en fait trigonaliser "mieux que ça" et montrer que A est semblable à

$$T = \left(\begin{array}{ccc} \alpha & 0 & 0 \\ 0 & \beta & 1 \\ 0 & 0 & \beta \end{array}\right).$$

Pour cela, il suffit de choisir v_3 tel que

$$u(v_3) = v_2 + \beta v_3,$$

plutôt que de compléter (v_1, v_2) "au hasard", et la théorie assure que c'est toujours possible dans ce cas.

b) Trigonalisation avec une valeur propre triple

La situation est plus complexe.

On suppose que $\chi_u(X) = (X - \alpha)^3$ avec dim $(E_\alpha(u)) \in \{1, 2\}$.

Méthode

• $Si \dim(E_{\alpha}(u)) = 2$, alors la situation est similaire au cas a) : on ne dispose que de **deux** vecteurs propres libres (v_1, v_2) .

On montre que A est semblable à $T = \begin{pmatrix} \alpha & 0 & 0 \\ 0 & \alpha & 1 \\ 0 & 0 & \alpha \end{pmatrix}$, en construisant une base (v_1, v_2, v_3) telle

$$que \left\{ \begin{array}{l} u(v_1) = \alpha v_1 \\ u(v_2) = \alpha v_2 \\ u(v_3) = v_2 + \alpha v_3 \end{array} \right..$$

• $Si \dim(E_{\alpha}(u)) = 1$, alors c'est encore plus compliqué : on ne dispose que d'un seul vecteur propre v_1 libre (puisque E_{α} est une droite, tous les vecteurs propres sont colinéaires entre eux).

Cette fois-ci, on montre que A est semblable à $T=\begin{pmatrix} \alpha & 1 & 0 \\ 0 & \alpha & 1 \\ 0 & 0 & \alpha \end{pmatrix}$, en construisant une base

$$(v_1, v_2, v_3)$$
 telle que
$$\begin{cases} u(v_1) = \alpha v_1 \\ u(v_2) = v_1 + \alpha v_2 \\ u(v_3) = v_2 + \alpha v_3 \end{cases}.$$

ATTENTION!

Dans chacun des deux cas, la construction d'une telle base peut être subtile (il ne suffit pas de compléter "au hasard" la famille libre de vecteurs propres).

Remarque

La trigonalisation explicite d'une matrice quelconque n'est pas exigible dans le cadre du programme, mais il faut savoir se débrouiller en "petite" dimension.

V Endomorphismes/matrices nilpotents

E désigne un \mathbb{K} -espace vectoriel, avec \mathbb{K} un sous-corps de \mathbb{C} .

Notation

On rappelle que $(\mathcal{L}(E), +, \circ, .)$ est une \mathbb{K} -algèbre (non commutative dès que $\dim(E) \geq 2$). Classiquement, on notera la composition des endomorphismes de la façon suivante :

$$\forall u \in \mathcal{L}(E), \ \forall k \in \mathbb{N}, \qquad u^k = \underbrace{u \circ u \circ \cdots \circ u}_{k \text{ fois}},$$

avec la convention $u^0 = Id_E$.

Définition 39 (Endomorphisme nilpotent, indice de nilpotence)

Soit $u \in \mathcal{L}(E)$. On dit que u est nilpotent lorsqu'il existe $p \in \mathbb{N}^*$ tel que $u^p = 0_{\mathcal{L}(E)}$. Dans ce cas, on appelle indice de nilpotence de u le plus petit entier $k \geq 1$ tel que $u^k = 0_{\mathcal{L}(E)}$.

Définition 40 (Matrice nilpotente, indice de nilpotence)

Soit $n \in \mathbb{N}^*$ et soit $A \in \mathcal{M}_n(\mathbb{K})$.

On dit que A est nilpotente lorsqu'il existe $p \in \mathbb{N}^*$ tel que $A^p = 0_{\mathcal{M}_n(\mathbb{K})}$.

Dans ce cas, on appelle indice de nilpotence de A le plus petit entier $k \geq 1$ tel que $A^k = 0_{\mathcal{M}_n(\mathbb{K})}$.

Remarque

Si E est de dimension finie, alors pour toute base \mathcal{B} de E et tout endomorphisme $u \in \mathcal{L}(E)$, on a

u nilpotent d'indice $p \iff Mat_{\mathcal{B}}(u)$ nilpotente d'indice p.

Théorème 41 (Caractérisation en dimension finie des endomorphismes nilpotents)

Soit E un \mathbb{K} -espace vectoriel de dimension finie, et soit $u \in \mathcal{L}(E)$.

Alors, u est nilpotent si et seulement si (u est trigonalisable et $Sp(u) = \{0\}$).

Preuve

Notons $n = \dim(E) \in \mathbb{N}^*$.

 \Longrightarrow Supposons que $u^p = 0_{\mathcal{L}(E)}$ avec $p \in \mathbb{N}^*$.

Fixons une base \mathcal{B} de E et notons $A = Mat_{\mathcal{B}}(u) \in \mathcal{M}_n(\mathbb{K}) \subset \mathcal{M}_n(\mathbb{C})$. On va montrer que A est trigonalisable dans $\mathcal{M}_n(\mathbb{K})$, en raisonnant avec les valeurs propres complexes de A.

Soit $\lambda \in Sp_{\mathbb{C}}(A)$. En notant $V \in \mathbb{C}^n \setminus \{0\}$ un vecteur propre associé à λ , on a

$$A^{p}V = A^{p-1}(AV) = A^{p-1}(\lambda V) = \lambda A^{p-1}V,$$

donc par récurrence immédiate :

$$A^p V = \lambda^p V = 0,$$

(puisque $A^p = 0$), ce qui entraîne $\lambda = 0$ (vu que V est non nul). D'où $Sp_{\mathbb{C}}(A) \subset \{0\}$, puis $Sp_{\mathbb{C}}(A) = Sp_{\mathbb{K}}(A) = \{0\}$ (puisque le spectre complexe n'est jamais vide). Le polynôme caractéristique de A est donc $\chi_A = X^n$. Ce polynôme étant scindé sur \mathbb{K} , la matrice A est trigonalisable dans $\mathcal{M}_n(\mathbb{K})$, donc u est trigonalisable et $Sp(u) = Sp_{\mathbb{K}}(A) = \{0\}$.

Si u est trigonalisable avec $Sp(u) = \{0\}$, alors il existe une base $\mathcal{B} = (e_1, \dots, e_n)$ de E dans laquelle la matrice de u est triangulaire supérieure avec des 0 sur la diagonale (la seule valeur propre étant 0):

$$Mat_{\mathcal{B}}(u) = \begin{pmatrix} 0 & * & \cdots & * \\ 0 & 0 & \ddots & \vdots \\ \vdots & \ddots & * \\ 0 & 0 & \cdots & 0 \end{pmatrix}.$$

Par lecture des colonnes, on en déduit que

$$u(e_1) = 0, \quad \forall i \in \{2, \dots, n\}, \ u(e_i) \in Vect(e_1, \dots, e_{i-1}),$$

donc par récurrence :

$$\forall k \in \{1, \dots, n-1\}, \qquad Im(u^k) = Vect(u^k(e_1), \dots, u^k(e_n)) = Vect(e_1, \dots, e_{n-k}).$$

Donc $Im(u^{n-1}) \subset Vect(e_1)$, et $Im(u^n) \subset \{0\}$, ce qui montre que $u^n = 0_{\mathcal{L}(E)}$ et donc u est nilpotent.

Remarque

On peut reformuler ce résultat de plusieurs façons :

- u est nilpotent ssi il existe une base de E dans laquelle la matrice de u est triangulaire supérieure avec des 0 sur la diagonale.
- Une matrice $A \in \mathcal{M}_n(\mathbb{K})$ est nilpotente ssi elle est semblable à une matrice triangulaire supérieure avec des 0 sur la diagonale.

Corollaire 42 (Indice de nilpotence en dimension finie)

Soit E un \mathbb{K} -espace vectoriel de dimension finie, et soit $u \in \mathcal{L}(E)$. Si u est nilpotent, alors son indice de nilpotence est inférieur ou égal à $n = \dim(E)$.

Preuve

La preuve du théorème précédent montre que si u est nilpotent, alors $u^n = 0_{\mathcal{L}(E)}$ (puisqu'on peut représenter u par une matrice triangulaire supérieure avec des 0 sur la diagonale dans une certaine base).

Remarque

On a donc également l'équivalence : $(u \ nilpotent \iff u^n = 0_{\mathcal{L}(E)}), \ où \ n = \dim(E).$